5,933 research outputs found

    Analysis and assessment of a knowledge based smart city architecture providing service APIs

    Get PDF
    Abstract The main technical issues regarding smart city solutions are related to data gathering, aggregation, reasoning, data analytics, access, and service delivering via Smart City APIs (Application Program Interfaces). Different kinds of Smart City APIs enable smart city services and applications, while their effectiveness depends on the architectural solutions to pass from data to services for city users and operators, exploiting data analytics, and presenting services via APIs. Therefore, there is a strong activity on defining smart city architectures to cope with this complexity, putting in place a significant range of different kinds of services and processes. In this paper, the work performed in the context of Sii-Mobility smart city project on defining a smart city architecture addressing a wide range of processes and data is presented. To this end, comparisons of the state of the art solutions of smart city architectures for data aggregation and for Smart City API are presented by putting in evidence the usage semantic ontologies and knowledge base in the data aggregation in the production of smart services. The solution proposed aggregate and re-conciliate data (open and private, static and real time) by using reasoning/smart algorithms for enabling sophisticated service delivering via Smart City API. The work presented has been developed in the context of the Sii-Mobility national smart city project on mobility and transport integrated with smart city services with the aim of reaching a more sustainable mobility and transport systems. Sii-Mobility is grounded on Km4City ontology and tools for smart city data aggregation, analytics support and service production exploiting smart city API. To this end, Sii-Mobility/Km4City APIs have been compared to the state of the art solutions. Moreover, the proposed architecture has been assessed in terms of performance, computational and network costs in terms of measures that can be easily performed on private cloud on premise. The computational costs and workloads of the data ingestion and data analytics processes have been assessed to identify suitable measures to estimate needed resources. Finally, the API consumption related data in the recent period are presented

    SmartCities Public Final Report

    No full text

    An Innovative, Open, Interoperable Citizen Engagement Cloud Platform for Smart Government and Users' Interaction

    Full text link
    This paper introduces an open, interoperable, and cloud-computing-based citizen engagement platform for the management of administrative processes of public administrations, which also increases the engagement of citizens. The citizen engagement platform is the outcome of a 3-year Italian national project called PRISMA (Interoperable cloud platforms for smart government). The aim of the project is to constitute a new model of digital ecosystem that can support and enable new methods of interaction among public administrations, citizens, companies, and other stakeholders surrounding cities. The platform has been defined by the media as a flexible (enable the addition of any kind of application or service) and open (enable access to open services) Italian "cloud" that allows public administrations to access to a vast knowledge base represented as linked open data to be reused by a stakeholder community with the aim of developing new applications ("Cloud Apps") tailored to the specific needs of citizens. The platform has been used by Catania and Syracuse municipalities, two of the main cities of southern Italy, located in the Sicilian region. The fully adoption of the platform is rapidly spreading around the whole region (local developers have already used available application programming interfaces (APIs) to create additional services for citizens and administrations) to such an extent that other provinces of Sicily and Italy in general expressed their interest for its usage. The platform is available online and, as mentioned above, is open source and provides APIs for full exploitation.Comment: 23 pages, 7 figures, journal pape

    An exploration of IoT platform development

    Get PDF
    IoT (Internet of Things) platforms are key enablers for smart city initiatives, targeting the improvement of citizens\u27 quality of life and economic growth. As IoT platforms are dynamic, proactive, and heterogeneous socio-technical artefacts, systematic approaches are required for their development. Limited surveys have exclusively explored how IoT platforms are developed and maintained from the perspective of information system development process lifecycle. In this paper, we present a detailed analysis of 63 approaches. This is accomplished by proposing an evaluation framework as a cornerstone to highlight the characteristics, strengths, and weaknesses of these approaches. The survey results not only provide insights of empirical findings, recommendations, and mechanisms for the development of quality aware IoT platforms, but also identify important issues and gaps that need to be addressed

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A Framework for Standardization of Distributed Ledger Technologies for Interoperable Data Integration and Alignment in Sustainable Smart Cities

    Get PDF
    Distributed ledger technologies (DLTs) are considered one of the foremost emerging technologies which can contribute to transform cities to smarter cities. DLT play important role in municipalities to accelerate the digitalization process toward changing the roles and services of enterprises in sustainable smart cities. Standardization of DLTs aids to reduce data and digital assets silos while decreasing vendor lock-in across distributed applications enabling a digital urban ecosystem that supports migration capabilities making it possible for cities to seamlessly achieve interoperability among DLTs and centralized digital platforms, although a few standards such as IEEE 2418, IEEE P2418.5, and ISO/TC 307 have been developed. The alignment and integration mechanisms required to support standardization of DLT for interoperable services in smart cities is lacking. Therefore, this study presents an understanding on current and open issues on standardization of DLTs in sustainable smart cities with a specific focus on data integration and alignment efforts related to interoperable DLTs. A framework is developed to promote standardization of DLTs to support integration and alignment for interoperability in smart cities. Design science research methodology was adopted based on three use case scenarios which illustrates how IOTA tangle is employs as a DLT for secured standardized communication between physical sensors, devices, and digital platforms in smart city environment. Findings from this article provide exploratory evidence demonstrating the potential uses of IOTA tangle through the developed framework applied for decentralized and centralized digital services. Based on this evidence, this study provides interface integration and alignment strategies to better exploit distributed applications full potential by improving DLT standardization in urban environment.publishedVersio

    York City Environmental Observatory : WP4 model integration

    Get PDF
    This work is produced as part of the York Urban Living Pilot (ULP) project an RCUK funded project to develop the York City Environmental Observatory (YCEO). The project is led by York University with York City Council as lead partners and other organisations including BGS. Split into a number of Work Packages (WPs), WP4 aims to set out the design for the implementation phase of the YCEO. This report forms part of the deliverables of WP4 and is concerned with model integration and aims to determine which models are available for the York area and how they could be integrated into the YCEO. The information was obtained by internet searches, literature review, and investigating known projects to determine: a) what models are out there and b) how model integration could be undertaken Evidence showed limited metadata for models of the York area, even though there is knowledge of models available. There is also limited examples of model integration platforms in the “smart city” context or even urban environments. However, exemplars exist including predictive analytics built on open data platforms and workflow approaches such as the Innovate UK funded Tombolo project. Application programming Interfaces (APIs) also offer possibilities in the UK with the Met Office and the Environment Agency making both observed data and model forecasts available via this method. A simple example is presented using APIs to determine when it is safe to row ont eh River Ouse, York. Model integration is problematic, but it can take many forms and Tombolo offers the opportunity to enable pre-formed solutions to be made available. The YCEO model platform should be based on pre-formed solutions using the Tombolo approach with semantic reasoning at its basis
    corecore