6,887 research outputs found

    Study of state-of-the-art static inverter design Final report, 6 Jan. - 6 Jun. 1966

    Get PDF
    Multiple purpose inverter design based on phase demodulated inverter circuit selected from state-of-the-art assessment of ten inverter circuit

    DolphinAtack: Inaudible Voice Commands

    Full text link
    Speech recognition (SR) systems such as Siri or Google Now have become an increasingly popular human-computer interaction method, and have turned various systems into voice controllable systems(VCS). Prior work on attacking VCS shows that the hidden voice commands that are incomprehensible to people can control the systems. Hidden voice commands, though hidden, are nonetheless audible. In this work, we design a completely inaudible attack, DolphinAttack, that modulates voice commands on ultrasonic carriers (e.g., f > 20 kHz) to achieve inaudibility. By leveraging the nonlinearity of the microphone circuits, the modulated low frequency audio commands can be successfully demodulated, recovered, and more importantly interpreted by the speech recognition systems. We validate DolphinAttack on popular speech recognition systems, including Siri, Google Now, Samsung S Voice, Huawei HiVoice, Cortana and Alexa. By injecting a sequence of inaudible voice commands, we show a few proof-of-concept attacks, which include activating Siri to initiate a FaceTime call on iPhone, activating Google Now to switch the phone to the airplane mode, and even manipulating the navigation system in an Audi automobile. We propose hardware and software defense solutions. We validate that it is feasible to detect DolphinAttack by classifying the audios using supported vector machine (SVM), and suggest to re-design voice controllable systems to be resilient to inaudible voice command attacks.Comment: 15 pages, 17 figure

    AM-baseband telemetry systems. Volume 5 - Summary

    Get PDF
    Demodulation process for AM baseband telemetry system

    Quantum Noise Locking

    Full text link
    Quantum optical states which have no coherent amplitude, such as squeezed vacuum states, can not rely on standard readout techniques to generate error signals for control of the quadrature phase. Here we investigate the use of asymmetry in the quadrature variances to obtain a phase-sensitive readout and to lock the phase of a squeezed vacuum state, a technique which we call noise locking (NL). We carry out a theoretical derivation of the NL error signal and the associated stability of the squeezed and anti-squeezed lock points. Experimental data for the NL technique both in the presence and absence of coherent fields are shown, including a comparison with coherent locking techniques. Finally, we use NL to enable a stable readout of the squeezed vacuum state on a homodyne detector.Comment: Accepted for publication in Journal of Optics:B special issue on Quantum Contro

    Coherent receiver employing nonlinear coherence detection for carrier tracking

    Get PDF
    The concept of nonlinear coherence employed in carrier tracking to improve telecommunications efficiency is disclosed. A generic tracking loop for a coherent receiver is shown having seven principle feedback signals which may be selectively added and applied to a voltage controlled oscillator to produce a reference signal that is phase coherent with a received carrier. An eighth feedback signal whose nonrandom components are coherent with the phase detected and filtered carrier may also be added to exploit the sideband power of the received signal. A ninth feedback signal whose nonrandom components are also coherent with the quadrature phase detected and filtered carrier could be additionally or alternatively included in the composite feedback signal to the voltage controlled oscillator

    Higher-Order Properties of Analytic Wavelets

    Full text link
    The influence of higher-order wavelet properties on the analytic wavelet transform behavior is investigated, and wavelet functions offering advantageous performance are identified. This is accomplished through detailed investigation of the generalized Morse wavelets, a two-parameter family of exactly analytic continuous wavelets. The degree of time/frequency localization, the existence of a mapping between scale and frequency, and the bias involved in estimating properties of modulated oscillatory signals, are proposed as important considerations. Wavelet behavior is found to be strongly impacted by the degree of asymmetry of the wavelet in both the frequency and the time domain, as quantified by the third central moments. A particular subset of the generalized Morse wavelets, recognized as deriving from an inhomogeneous Airy function, emerge as having particularly desirable properties. These "Airy wavelets" substantially outperform the only approximately analytic Morlet wavelets for high time localization. Special cases of the generalized Morse wavelets are examined, revealing a broad range of behaviors which can be matched to the characteristics of a signal.Comment: 15 pages, 6 Postscript figure

    A Carrier Signal Approach for Intermittent Fault Detection and Health Monitoring for Electronics Interconnections System

    Get PDF
    Abstract: Intermittent faults are completely missed out by traditional monitoring and detection techniques due to non-stationary nature of signals. These are the incipient events of a precursor of permanent faults to come. Intermittent faults in electrical interconnection are short duration transients which could be detected by some specific techniques but these do not provide enough information to understand the root cause of it. Due to random and non-predictable nature, the intermittent faults are the most frustrating, elusive, and expensive faults to detect in interconnection system. The novel approach of the author injects a fixed frequency sinusoidal signal into electronics interconnection system that modulates intermittent fault if persist. Intermittent faults and other channel effects are computed from received signal by demodulation and spectrum analysis. This paper describes technology for intermittent fault detection, and classification of intermittent fault, and channel characterization. The paper also reports the functionally tests of computational system of the proposed methods. This algorithm has been tested using experimental setup. It generate an intermittent signal by external vibration stress on connector and intermittency is detected by acquiring and processing propagating signal. The results demonstrate to detect and classify intermittent interconnection and noise variations due to intermittency. Monitoring the channel in-situ with low amplitude, and narrow band signal over electronics interconnection between a transmitter and a receiver provides the most effective tool for continuously watching the wire system for the random, unpredictable intermittent faults, the precursor of failure. - See more at: http://thesai.org/Publications/ViewPaper?Volume=6&Issue=12&Code=ijacsa&SerialNo=20#sthash.8RXsdW0t.dpu

    Fuzzy determination of informative frequency band for bearing fault detection

    Get PDF
    Detecting early faults in rolling element bearings is a crucial measure for the health maintenance of rotating machinery. As faulty features of bearings are usually demodulated into a high-frequency band, determining the informative frequency band (IFB) from the vibratory signal is a challenging task for weak fault detection. Existing approaches for IFB determination often divide the frequency spectrum of the signal into even partitions, one of which is regarded as the IFB by an individual selector. This work proposes a fuzzy technique to select the IFB with improvements in two aspects. On the one hand, an IFB-specific fuzzy clustering method is developed to segment the frequency spectrum into meaningful sub-bands. Considering the shortcomings of the individual selectors, on the other hand, three commonly-used selectors are combined using a fuzzy comprehensive evaluation method to guide the clustering. Among all the meaningful sub-bands, the one with the minimum comprehensive cost is determined as the IFB. The bearing faults, if any, can be detected from the demodulated envelope spectrum of the IFB. The proposed fuzzy technique was evaluated using both simulated and experimental data, and then compared with the state-of-the-art peer method. The results indicate that the proposed fuzzy technique is capable of generating a better IFB, and is suitable for detecting bearing faults

    Efficient detection and signal parameter estimation with application to high dynamic GPS receiver

    Get PDF
    In a system for deriving position, velocity, and acceleration information from a received signal emitted from an object to be tracked wherein the signal comprises a carrier signal phase modulated by unknown binary data and experiencing very high Doppler and Doppler rate, this invention provides combined estimation/detection apparatus for simultaneously detecting data bits and obtaining estimates of signal parameters such as carrier phase and frequency related to receiver dynamics in a sequential manner. There is a first stage for obtaining estimates of the signal parameters related to phase and frequency in the vicinity of possible data transitions on the basis of measurements obtained within a current data bit. A second stage uses the estimates from the first stage to decide whether or not a data transition has actually occurred. There is a third stage for removing data modulation from the received signal when a data transition has occurred and a fourth stage for using the received signal with data modulation removed therefrom to update global parameters which are dependent only upon receiver dynamics and independent of data modulation. Finally, there is a fifth stage for using the global parameters to determine the position, velocity, and acceleration of the object
    • …
    corecore