3,759 research outputs found

    Performance analysis of carrier aggregation for various mobile network implementations scenario based on spectrum allocated

    Full text link
    Carrier Aggregation (CA) is one of the Long Term Evolution Advanced (LTE-A) features that allow mobile network operators (MNO) to combine multiple component carriers (CCs) across the available spectrum to create a wider bandwidth channel for increasing the network data throughput and overall capacity. CA has a potential to enhance data rates and network performance in the downlink, uplink, or both, and it can support aggregation of frequency division duplexing (FDD) as well as time division duplexing (TDD). The technique enables the MNO to exploit fragmented spectrum allocations and can be utilized to aggregate licensed and unlicensed carrier spectrum as well. This paper analyzes the performance gains and complexity level that arises from the aggregation of three inter-band component carriers (3CC) as compared to the aggregation of 2CC using a Vienna LTE System Level simulator. The results show a considerable growth in the average cell throughput when 3CC aggregations are implemented over the 2CC aggregation, at the expense of reduction in the fairness index. The reduction in the fairness index implies that, the scheduler has an increased task in resource allocations due to the added component carrier. Compensating for such decrease in the fairness index could result into scheduler design complexity. The proposed scheme can be adopted in combining various component carriers, to increase the bandwidth and hence the data rates.Comment: 13 page

    Enabling RAN Slicing Through Carrier Aggregation in mmWave Cellular Networks

    Full text link
    The ever increasing number of connected devices and of new and heterogeneous mobile use cases implies that 5G cellular systems will face demanding technical challenges. For example, Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) scenarios present orthogonal Quality of Service (QoS) requirements that 5G aims to satisfy with a unified Radio Access Network (RAN) design. Network slicing and mmWave communications have been identified as possible enablers for 5G. They provide, respectively, the necessary scalability and flexibility to adapt the network to each specific use case environment, and low latency and multi-gigabit-per-second wireless links, which tap into a vast, currently unused portion of the spectrum. The optimization and integration of these technologies is still an open research challenge, which requires innovations at different layers of the protocol stack. This paper proposes to combine them in a RAN slicing framework for mmWaves, based on carrier aggregation. Notably, we introduce MilliSlice, a cross-carrier scheduling policy that exploits the diversity of the carriers and maximizes their utilization, thus simultaneously guaranteeing high throughput for the eMBB slices and low latency and high reliability for the URLLC flows.Comment: 8 pages, 8 figures. Proc. of the 18th Mediterranean Communication and Computer Networking Conference (MedComNet 2020), Arona, Italy, 202
    corecore