4 research outputs found

    Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation

    Get PDF
    Leurs, R. [Promotor]Smit, M.J. [Promotor

    Advances in Ginsenosides

    Get PDF
    This book collected recent innovative research and review articles on analytical techniques, production protocols, biotechnological tools, and new insights into bioactivities of ginsenosides including the effects on epithelial-mesenchymal transition, hippocampal neurogenesis and inflammation as well as on diseases such as ischemic stroke, autoimmune diseases, and allergic disorders. Additionally, the analysis through molecular docking and an overview of the Panax ginseng pharmacopuncture were also presented

    Le rôle de l’adénosine au cours de l'embryogenèse des vertébrés

    Get PDF
    Extracellular adenosine belongs to the purinergic signalling pathway and regulatesvarious physiological processes through activation of specific receptors named adora. Theextracellular concentration of adenosine is regulated by several ecto-enzymes involved eitherin its generation or in its degradation but also by nucleoside transporters enabling its exitoutside or entry inside the cell. In adults, the functions of adenosine are quite well known,however, the its involvement during embryogenesis remains poorly studied. An excess ofadenosine in early phases of development is lethal in mouse and sea urchins, demonstratingthe importance of the extracellular adenosine level regulation during embryogenesis. The aimof my phD is to understand the role of adenosine during embryogenesis using Xenopus as avertebrate model. Indeed, the first in vivo evidence of the implication of the purinergic signallingpathway during vertebrate development, and in particular of ADP during eye formation hasbeen demonstrated using this model. The first part of this project was to characterize all theadenosine signalling pathway actors in Xenopus in order to generate the first comprehensiveand comparative embryonic expression map of these genes. This work allowed me to selectthe alkaline phosphatase alpl for functional studies based on its specific expression profile, inthe retina and kidney. These functional studies, mostly carried out by knockdown experiments,constituted the second part of this phD and showed the implication of this enzyme during theeye and kidney development.L’adénosine extracellulaire appartient à la voie de signalisation purinergique et réguledivers processus physiologiques à travers l’activation de ses récepteurs spécifiques (adora).La disponibilité de cette purine dans l’espace extracellulaire est régulée par plusieurs ectoenzymesassurant sa production ou sa dégradation, mais également par des transporteurs denucléosides permettant son passage à travers la membrane. Chez l’adulte, le rôle del’adénosine est assez bien connu. Cependant, l’implication de cette purine au cours del’embryogenèse reste très peu étudiée. Pourtant, un excès d’adénosine dans les phasesprécoces du développement est létal chez la souris et l’oursin, démontrant l’importance de larégulation des concentrations de cette molécule de signalisation lors de l’embryogénèse. Lebut de ma thèse est de comprendre le rôle de l’adénosine au cours de l’embryogenèse enutilisant l’amphibien xénope. En effet, ce modèle a permis de mettre en évidence in vivol’implication de l’ADP au cours du développement de l’oeil chez les vertébrés. La premièrepartie de ce projet a permis de caractériser les acteurs de la voie de signalisation del’adénosine chez le xénope afin d’établir la première carte comparative de leur profild’expression embryonnaire. Cette partie a également permis de mettre en avant laphosphatase alcaline alpl pour son profil d’expression particulier, dans le rein et la rétine. Laseconde partie s’est focalisée sur l’étude fonctionnelle de cette enzyme. Les expériences deperte de fonction montrent son implication lors de la formation de ces deux tissus

    Importance des glycoconjugués périphériques dans la différenciation myogénique : Rôle particulier de l'Ω (2,6) sialylation

    Get PDF
    Skeletal muscle development is a complex process highly regulated and which includes proliferation then differentiation of progenitor cells or myoblasts into multi-nucleated myotubes. Glycosylation is the main post-translational modification of proteins. Its role in various biological and pathological processes is well documented, but the precise mechanisms of its involvement during myogenesis are still poorly understood.We have used the C2C12 myoblast as a model cell line since it is able to mimic in vitro the steps of muscle cell proliferation and differentiation. Using different lectins we showed a change in the peripheral α2-6 sialylation of the cell surface glycoconjugates, during C2C12 differentiation. Besides, we also analyzed by mass spectrometry the N-glycans carried by glycoproteins and measured the expression levels of α2-6 sialyl-transferases and neuraminidases genes. All the results confirm that C2C12 differentiation is accompanied by a decrease of glycoconjugates sialylation. To highlight the involvement of α2-6 sialylation in myogenesis, we performed a functional study of C2C12 cells knockdown for St6gal1 by a specific shRNA. The generated clones exhibit a higher fusion index and generate more elongated myotubes. This phenotype probably results from an increased commitment of reserve cell in differentiation. Indeed, the clones knockdown for St6gal1 contain a lower proportion of Pax7+ cells, i.e. of reserve cells maintained in a quiescent state. Thus, our results show the significant involvement of the peripheral α2-6 sialylation during myogenic differentiation.Le développement du muscle squelettique est un processus complexe très finement régulé, qui inclus des étapes de prolifération de cellules progénitrices appelées myoblastes et des étapes de différenciation pour former des myotubes multi nucléés. La glycosylation est la principale modification post-traductionnelle des protéines. Son rôle dans divers processus biologiques et pathologiques est largement documenté, mais les mécanismes intimes de son implication lors du processus myogénique restent mal élucidés. Nous avons pris comme modèle cellulaire la lignée myoblastique C2C12 car elle est capable de mimer in vitro les étapes de prolifération et de différenciation de la cellule musculaire. En utilisant différentes lectines, nous montrons un changement de la sialylation périphérique en α2-6 des glycoconjugués de surface de la cellule C2C12 durant la différenciation myoblastique. En complément, nous avons analysé les N-glycannes des glycoprotéines par spectrométrie de masse et mesuré les niveaux d’expression des gènes des α2-6 sialyl-transférases et neuraminidases. Tous les résultats obtenus confirment bien que la différenciation des cellules C2C12 est accompagnée d’une diminution du taux de sialylation des glycoconjugués. Pour mieux comprendre l’implication de la sialylation en α2-6 dans la myogenèse, nous avons réalisé une étude fonctionnelle sur des cellules C2C12 qui sous-expriment St6gal1 du fait de l’introduction d’un shRNA spécifique. Les clones obtenus présentent de plus forts index de fusion et génèrent un plus grand nombre de myotubes qui, de surcroit, sont de grande taille. Ce phénotype est probablement dû à un engagement accru des cellules de réserve en différenciation. En effet, les clones sous-exprimant St6gal1 contiennent une plus petite proportion de cellules Pax7+, c’est-à-dire de cellules de réserve maintenues dans un état de quiescence.Ainsi, nos résultats montrent l’importante implication de la sialylation périphérique en α2-6 au cours de la différenciation myogénique
    corecore