198 research outputs found

    High Frequency Radar Wind Turbine Interference Community Working Group Report

    Get PDF
    Land-based High Frequency (HF) Radars provide critically important observations of the coastal ocean that will be adversely affected by the spinning blades of utility-scale wind turbines. Pathways to mitigate the interference of turbines on HF radar observations exist for small number of turbines; however, a greatly increased pace of research is required to understand how to minimize the complex interference patterns that will be caused by the large arrays of turbines planned for the U.S. outer continental shelf. To support the U.S.’s operational and scientific needs, HF radars must be able to collect high-quality measurements of the ocean’s surface inand around areas with significant numbers of wind turbines. This is a solvable problem, but given the rapid pace of wind energy development, immediate action is needed to ensure that HF radar wind turbine interference mitigation efforts keep pace with the planned build out of turbines

    Noise radar technology as an interference prevention method

    Get PDF
    In some applications, such as automotive and marine/navigation, hundreds of radars may operate in a small environment (e.g., a road complex or a strait) and in an allocated frequency band with limited width. Therefore, a compatibility problem between different radars arises that is not easily solved by time, frequency, space, or polarization diversity. The advent of fast digital signal processing and signal generation techniques makes it possible to use waveform diversity to solve this problem that will be exacerbated in the next future. Ideal waveforms for the diversity are supplied by Noise Radar Technology (NRT), whose application is promising in some military applications as well as in the civilian applications considered in this paper. In addition to being orthogonal as much as possible, the random signals to be transmitted have to satisfy requirements concerning side lobe level and crest factor, calling for novel, original design and generation processes

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF

    Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Full text link

    Whatcom wind energy ordinance

    Get PDF
    The purpose of this ordinance is to create zoning text language that facilitates the installment and construction of wind energy systems (WES) within Whatcom County for private landowners, taking into account interests expressed by residents. This action is needed, because current height limitations of underlying zoning districts unduly restrict the installment of these systems. This action responds to the goals and objectives outlined in the Whatcom County Comprehensive Plan and Washington State Growth Management Act. The action helps move the project area towards desired conditions described in that plan by placing a high priority on healthy air quality and environmental protection of the community. It also helps support the plan\u27s goal to promote renewable energy systems, such as SWES, within Whatcom County and the greater Puget Sound area. Whatcom County has had numerous inquiries and building permit applications for SWES\u27s which are currently permitted as an accessory use within the zoning code, but the height limitations of the underlying zoning districts are not practical for a windmill

    HF Radar activity in European coastal seas: next steps toward a Pan-European HF Radar network

    Get PDF
    High Frequency Radar (HFR) is a land-based remote sensing instrument offering a unique insight to coastal ocean variability, by providing synoptic, high frequency and high resolution data at the ocean atmosphere interface. HFRs have become invaluable tools in the field of operational oceanography for measuring surface currents, waves and winds, with direct applications in different sectors and an unprecedented potential for the integrated management of the coastal zone. In Europe, the number of HFR networks has been showing a significant growth over the past 10 years, with over 50 HFRs currently deployed and a number in the planning stage. There is also a growing literature concerning the use of this technology in research and operational oceanography. A big effort is made in Europe toward a coordinated development of coastal HFR technology and its products within the framework of different European and international initiatives. One recent initiative has been to make an up-to-date inventory of the existing HFR operational systems in Europe, describing the characteristics of the systems, their operational products and applications. This paper offers a comprehensive review on the present status of European HFR network, and discusses the next steps toward the integration of HFR platforms as operational components of the European Ocean Observing System, designed to align and integrate Europe's ocean observing capacity for a truly integrated end-to-end observing system for the European coasts

    Remote sensing applications: an overview

    Get PDF
    Remote Sensing (RS) refers to the science of identification of earth surface features and estimation of their geo-biophysical properties using electromagnetic radiation as a medium of interaction. Spectral, spatial, temporal and polarization signatures are major characteristics of the sensor/target, which facilitate target discrimination. Earth surface data as seen by the sensors in different wavelengths (reflected, scattered and/or emitted) is radiometrically and geometrically corrected before extraction of spectral information. RS data, with its ability for a synoptic view, repetitive coverage with calibrated sensors to detect changes, observations at different resolutions, provides a better alternative for natural resources management as compared to traditional methods. Indian Earth Observation (EO) programme has been applications-driven and national development has been its prime motivation. From Bhaskara to Cartosat, India's EO capability has increased manifold. Improvements are not only in spatial, spectral, temporal and radiometric resolutions, but also in their coverage and value-added products. Some of the major operational application themes, in which India has extensively used remote sensing data are agriculture, forestry, water resources, land use, urban sprawl, geology, environment, coastal zone, marine resources, snow and glacier, disaster monitoring and mitigation, infrastructure development, etc. The paper reviews RS techniques and applications carried out using both optical and microwave sensors. It also analyses the gap areas and discusses the future perspectives

    Coastal high-frequency radars in the Mediterranean - Part 2: Applications in support of science priorities and societal needs

    Get PDF
    The Mediterranean Sea is a prominent climate-change hot spot, with many socioeconomically vital coastal areas being the most vulnerable targets for maritime safety, diverse met-ocean hazards and marine pollution. Providing an unprecedented spatial and temporal resolution at wide coastal areas, high-frequency radars (HFRs) have been steadily gaining recognition as an effective land-based remote sensing technology for continuous monitoring of the surface circulation, increasingly waves and occasionally winds. HFR measurements have boosted the thorough scientific knowledge of coastal processes, also fostering a broad range of applications, which has promoted their integration in coastal ocean observing systems worldwide, with more than half of the European sites located in the Mediterranean coastal areas. In this work, we present a review of existing HFR data multidisciplinary science-based applications in the Mediterranean Sea, primarily focused on meeting end-user and science-driven requirements, addressing regional challenges in three main topics: (i) maritime safety, (ii) extreme hazards and (iii) environmental transport process. Additionally, the HFR observing and monitoring regional capabilities in the Mediterranean coastal areas required to underpin the underlying science and the further development of applications are also analyzed. The outcome of this assessment has allowed us to provide a set of recommendations for future improvement prospects to maximize the contribution to extending science-based HFR products into societally relevant downstream services to support blue growth in the Mediterranean coastal areas, helping to meet the UN's Decade of Ocean Science for Sustainable Development and the EU's Green Deal goals
    • …
    corecore