2,920 research outputs found

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    An Empirical Model of Packet Processing Delay of the Open vSwitch

    Full text link
    Network virtualization offers flexibility by decoupling virtual network from the underlying physical network. Software-Defined Network (SDN) could utilize the virtual network. For example, in Software-Defined Networks, the entire network can be run on commodity hardware and operating systems that use virtual elements. However, this could present new challenges of data plane performance. In this paper, we present an empirical model of the packet processing delay of a widely used OpenFlow virtual switch, the Open vSwitch. In the empirical model, we analyze the effect of varying Random Access Memory (RAM) and network parameters on the performance of the Open vSwitch. Our empirical model captures the non-network processing delays, which could be used in enhancing the network modeling and simulation
    corecore