822 research outputs found

    Jointly Sparse Support Recovery via Deep Auto-encoder with Applications in MIMO-based Grant-Free Random Access for mMTC

    Full text link
    In this paper, a data-driven approach is proposed to jointly design the common sensing (measurement) matrix and jointly support recovery method for complex signals, using a standard deep auto-encoder for real numbers. The auto-encoder in the proposed approach includes an encoder that mimics the noisy linear measurement process for jointly sparse signals with a common sensing matrix, and a decoder that approximately performs jointly sparse support recovery based on the empirical covariance matrix of noisy linear measurements. The proposed approach can effectively utilize the feature of common support and properties of sparsity patterns to achieve high recovery accuracy, and has significantly shorter computation time than existing methods. We also study an application example, i.e., device activity detection in Multiple-Input Multiple-Output (MIMO)-based grant-free random access for massive machine type communications (mMTC). The numerical results show that the proposed approach can provide pilot sequences and device activity detection with better detection accuracy and substantially shorter computation time than well-known recovery methods.Comment: 5 pages, 8 figures, to be publised in IEEE SPAWC 2020. arXiv admin note: text overlap with arXiv:2002.0262

    Achieving Energy-Efficient Uplink URLLC with MIMO-Aided Grant-Free Access

    Full text link
    The optimal design of the energy-efficient multiple-input multiple-output (MIMO) aided uplink ultra-reliable low-latency communications (URLLC) system is an important but unsolved problem. For such a system, we propose a novel absorbing-Markov-chain-based analysis framework to shed light on the puzzling relationship between the delay and reliability, as well as to quantify the system energy efficiency. We derive the transition probabilities of the absorbing Markov chain considering the Rayleigh fading, the channel estimation error, the zero-forcing multi-user-detection (ZF-MUD), the grant-free access, the ACK-enabled retransmissions within the delay bound and the interactions among these technical ingredients. Then, the delay-constrained reliability and the system energy efficiency are derived based on the absorbing Markov chain formulated. Finally, we study the optimal number of user equipments (UEs) and the optimal number of receiving antennas that maximize the system energy efficiency, while satisfying the reliability and latency requirements of URLLC simultaneously. Simulation results demonstrate the accuracy of our theoretical analysis and the effectiveness of massive MIMO in supporting large-scale URLLC systems.Comment: 14 pages, 9 figures, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 202

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore