346 research outputs found

    Joint and Competitive Caching Designs in Large-Scale Multi-Tier Wireless Multicasting Networks

    Get PDF
    Caching and multicasting are two promising methods to support massive content delivery in multi-tier wireless networks. In this paper, we consider a random caching and multicasting scheme with caching distributions in the two tiers as design parameters, to achieve efficient content dissemination in a two-tier large-scale cache-enabled wireless multicasting network. First, we derive tractable expressions for the successful transmission probabilities in the general region as well as the high SNR and high user density region, respectively, utilizing tools from stochastic geometry. Then, for the case of a single operator for the two tiers, we formulate the optimal joint caching design problem to maximize the successful transmission probability in the asymptotic region, which is nonconvex in general. By using the block successive approximate optimization technique, we develop an iterative algorithm, which is shown to converge to a stationary point. Next, for the case of two different operators, one for each tier, we formulate the competitive caching design game where each tier maximizes its successful transmission probability in the asymptotic region. We show that the game has a unique Nash equilibrium (NE) and develop an iterative algorithm, which is shown to converge to the NE under a mild condition. Finally, by numerical simulations, we show that the proposed designs achieve significant gains over existing schemes.Comment: 30 pages, 6 pages, submitted to IEEE GLOBECOM 2017 and IEEE Trans. Commo

    Coding, Multicast and Cooperation for Cache-Enabled Heterogeneous Small Cell Networks

    Get PDF
    Caching at the wireless edge is a promising approach to dealing with massive content delivery in heterogeneous wireless networks, which have high demands on backhaul. In this paper, a typical cache-enabled small cell network under heterogeneous file and network settings is considered using maximum distance separable (MDS) codes for content restructuring. Unlike those in the literature considering online settings with the assumption of perfect user request information, we estimate the joint user requests using the file popularity information and aim to minimize the long-term average backhaul load for fetching content from external storage subject to the overall cache capacity constraint by optimizing the content placement in all the cells jointly. Both multicast-aware caching and cooperative caching schemes with optimal content placement are proposed. In order to combine the advantages of multicast content delivery and cooperative content sharing, a compound caching technique, which is referred to as multicast-aware cooperative caching, is then developed. For this technique, a greedy approach and a multicast-aware in-cluster cooperative approach are proposed for the small-scale networks and large-scale networks, respectively. Mathematical analysis and simulation results are presented to illustrate the advantages of MDS codes, multicast, and cooperation in terms of reducing the backhaul requirements for cache-enabled small cell networks

    Deep learning-based edge caching for multi-cluster heterogeneous networks

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. In this work, we consider a time and space evolution cache refreshing in multi-cluster heterogeneous networks. We consider a two-step content placement probability optimization. At the initial complete cache refreshing optimization, the joint optimization of the activated base station density and the content placement probability is considered. And we transform this optimization problem into a GP problem. At the following partial cache refreshing optimization, we take the time–space evolution into consideration and derive a convex optimization problem subjected to the cache capacity constraint and the backhaul limit constraint. We exploit the redundant information in different content popularity using the deep neural network to avoid the repeated calculation because of the change in content popularity distribution at different time slots. Trained DNN can provide online response to content placement in a multi-cluster HetNet model instantaneously. Numerical results demonstrate the great approximation to the optimum and generalization ability
    • …
    corecore