68,744 research outputs found

    Modeling of Packet Streaming Services in Information Communication Networks

    Get PDF
    Application of the term video streaming in contemporary usage denotes compression techniques and data buffering, which can transmit video in real time over the network. There is currently a rapid growth and development of technologies using wireless broadband technology as a transport, which is a seri- ous alternative to cellular communication systems. Adverse effect of the aggressive environment used in wireless networks transmission results in data packets undergoing serious distortions and often get- ting lost in transit. All existing research in this area investigate the known types of errors separately. At present there are no standard approaches to determining the effect of errors on transmission quality of services. Besides, the spate in popularity of multimedia applications has led to the need for optimization of bandwidth allocation and usage in telecommunication networks. Modern telecommunication networks should by their definition be able to maintain the quality of different applications with different Quality of Service (QoS) levels. QoS requirements are generally dependent on the parameters of network and application layers of the OSI model. At the application layer QoS depends on factors such as resolution, bit rate, frame rate, video type, audio codecs, and so on. At the network layer, distortions (such as delay, jitter, packet loss, etc.) are introduced

    Empirical exploration of air traffic and human dynamics in terminal airspaces

    Full text link
    Air traffic is widely known as a complex, task-critical techno-social system, with numerous interactions between airspace, procedures, aircraft and air traffic controllers. In order to develop and deploy high-level operational concepts and automation systems scientifically and effectively, it is essential to conduct an in-depth investigation on the intrinsic traffic-human dynamics and characteristics, which is not widely seen in the literature. To fill this gap, we propose a multi-layer network to model and analyze air traffic systems. A Route-based Airspace Network (RAN) and Flight Trajectory Network (FTN) encapsulate critical physical and operational characteristics; an Integrated Flow-Driven Network (IFDN) and Interrelated Conflict-Communication Network (ICCN) are formulated to represent air traffic flow transmissions and intervention from air traffic controllers, respectively. Furthermore, a set of analytical metrics including network variables, complex network attributes, controllers' cognitive complexity, and chaotic metrics are introduced and applied in a case study of Guangzhou terminal airspace. Empirical results show the existence of fundamental diagram and macroscopic fundamental diagram at the route, sector and terminal levels. Moreover, the dynamics and underlying mechanisms of "ATCOs-flow" interactions are revealed and interpreted by adaptive meta-cognition strategies based on network analysis of the ICCN. Finally, at the system level, chaos is identified in conflict system and human behavioral system when traffic switch to the semi-stable or congested phase. This study offers analytical tools for understanding the complex human-flow interactions at potentially a broad range of air traffic systems, and underpins future developments and automation of intelligent air traffic management systems.Comment: 30 pages, 28 figures, currently under revie

    Modelling Self-similar Traffic Of Multiservice Networks

    Get PDF
    Simulation modelling is carried out, which allows adequate describing the traffic of multiservice networks with the commutation of packets with the characteristic of burstiness. One of the most effective methods for studying the traffic of telecommunications systems is computer simulation modelling. By using the theory of queuing systems (QS), computer simulation modelling of packet flows (traffic) in modern multi-service networks is performed as a random self-similar process. Distribution laws such as exponential, Poisson and normal-logarithmic distributions, Pareto and Weibull distributions have been considered.The distribution of time intervals between arrivals of packages and the service duration of service of packages at different system loads has been studied. The research results show that the distribution function of time intervals between packet arrivals and the service duration of packages is in good agreement with the Pareto and Weibull distributions, but in most cases the Pareto distribution prevails.The queuing systems with the queues M/Pa/1 and Pa/M/1 has been studied, and the fractality of the intervals of requests arriving have been compared by the properties of the estimates of the system load and the service duration. It has been found out that in the system Pa/M/1, with the parameter of the form a> 2, the fractality of the intervals of requests arriving does not affect the average waiting time and load factor. However, when ≤2, as in the M/Pa/1 system, both considered statistical estimates differ.The application of adequate mathematical models of traffic allows to correctly assess the characteristics of the quality of service (QoS) of the network
    • …
    corecore