1,133 research outputs found

    In situ sensors for measurements in the global trosposphere

    Get PDF
    Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere

    Joint detection and localization of vessels at sea with a GNSS-Based multistatic radar

    Get PDF
    This paper addresses the exploitation of global navigation satellite systems as opportunistic sources for the joint detection and localization of vessels at sea in a passive multistatic radar system. A single receiver mounted on a proper platform (e.g., a moored buoy) can collect the signals emitted by multiple navigation satellites and reflected from ship targets of interest. This paper puts forward a single-stage approach to jointly detect and localize the ship targets by making use of long integration times (tens of seconds) and properly exploiting the spatial diversity offered by such a configuration. A proper strategy is defined to form a long-time and multistatic range and Doppler (RD) map, where the total target power can be reinforced with respect to, in turn, the case in which the RD map is obtained over a short dwell and the case in which a single transmitter is employed. The exploitation of both the long integration time and the multiple transmitters can greatly enhance the performance of the system, allowing counteracting the low-power budget provided by the considered sources representing the main bottleneck of this technology. Moreover, the proposed single-stage approach can reach superior detection performance than a conventional two-stage process where peripheral decisions are taken at each bistatic link and subsequently the localization is achieved by multilateration methods. Theoretical and simulated performance analysis is proposed and also validated by means of experimental results considering Galileo transmitters and different types of targets of opportunity in different scenarios. Obtained results prove the effectiveness of the proposed method to provide detection and localization of ship targets of interest

    Improving elevation resolution in phased-array inspections for NDT

    Get PDF
    The Phased Array Ultrasonic Technique (PAUT) offers great advantages over the conventional ultrasound technique (UT), particularly because of beam focusing, beam steering and electronic scanning capabilities. However, the 2D images obtained have usually low resolution in the direction perpendicular to the array elements, which limits the inspection quality of large components by mechanical scanning. This paper describes a novel approach to improve image quality in these situations, by combining three ultrasonic techniques: Phased Array with dynamic depth focusing in reception, Synthetic Aperture Focusing Technique (SAFT) and Phase Coherence Imaging (PCI). To be applied with conventional NDT arrays (1D and non-focused in elevation) a special mask to produce a wide beam in the movement direction was designed and analysed by simulation and experimentally. Then, the imaging algorithm is presented and validated by the inspection of test samples. The obtained images quality is comparable to that obtained with an equivalent matrix array, but using conventional NDT arrays and equipments, and implemented in real time.Fil: Brizuela, Jose David. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Camacho, J.. Consejo Superior de Investigaciones Científicas; EspañaFil: Cosarinsky, Guillermo Gerardo. Comisión Nacional de Energía Atómica; ArgentinaFil: Iriarte, Juan Manuel. Comisión Nacional de Energía Atómica; ArgentinaFil: Cruza, Jorge F.. Consejo Superior de Investigaciones Científicas; Españ

    GNSS-based passive radar techniques for maritime surveillance

    Get PDF
    The improvement of maritime traffic safety and security is a subject of growing interest, since the traffic is constantly increasing. In fact, a large number of human activities take place in maritime domain, varying from cruise and trading ships up to vessels involved in nefarious activities such as piracy, human smuggling or terrorist actions. The systems based on Automatic Identification System (AIS) transponder cannot cope with non-cooperative or non-equipped vessels that instead can be detected, tracked and identified by means of radar system. In particular, passive bistatic radar (PBR) systems can perform these tasks without a dedicated transmitter, since they exploit illuminators of opportunity as transmitters. The lack of a dedicated transmitter makes such systems low cost and suitable to be employed in areas where active sensors cannot be placed such as, for example, marine protected areas. Innovative solutions based on terrestrial transmitters have been considered in order to increase maritime safety and security, but these kinds of sources cannot guarantee a global coverage, such as in open sea. To overcome this problem, the exploitation of global navigation satellites system (GNSS) as transmitters of opportunity is a prospective solution. The global, reliable and persistent nature of these sources makes them potentially able to guarantee the permanent monitoring of both coastal and open sea areas. To this aim, this thesis addresses the exploitation of Global Navigation Satellite Systems (GNSS) as transmitters of opportunity in passive bistatic radar (PBR) systems for maritime surveillance. The main limitation of this technology is the restricted power budget provided by navigation satellites, which makes it necessary to define innovative moving target detection techniques specifically tailored for the system under consideration. For this reason, this thesis puts forward long integration time techniques able to collect the signal energy over long time intervals (tens of seconds), allowing the retrieval of suitable levels of signal-to-disturbance ratios for detection purposes. The feasibility of this novel application is firstly investigated in a bistatic system configuration. A long integration time moving target detection technique working in bistatic range&Doppler plane is proposed and its effectiveness is proved against synthetic and experimental datasets. Subsequently the exploitation of multiple transmitters for the joint detection and localization of vessels at sea is also investigated. A single-stage approach to jointly detect and localize the ship targets by making use of long integration times (tens of seconds) and properly exploiting the spatial diversity offered by such a configuration is proposed. Furthermore, the potential of the system to extract information concerning the detected target characteristics for further target classification is assessed

    A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding

    Get PDF
    We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010

    Active Remote Sensing: Lidar SNR Improvements

    Get PDF

    Bistatic SAR data acquisition and processing using SABRINA-X, with TerraSAR-X as the opportunity transmitter

    Get PDF
    This thesis investigates the acquisition and processing of Bistatic SAR data using SABRINA-X, and with TerraSAR-X as the transmitter of opportunity. SABRINA-X is an X-band receiver system that has been recently designed at the UPC Remote-Sensing Laboratory, while TerraSARX is a German satellite for SAR-based active remote-sensing. Prior to the particular case of acquiring TerraSAR-X signals, the hardware aspects of SABRINAX have been investigated further, and improved as necessary (or suggested for up-gradation in future). Two successful data acquisitions have been carried out, to obtain bistatic SAR images of the Barcelona harbor, with the receiver set-up at the close-by Montjuïc hill. Each acquisition campaign necessitated an accurate prediction of the satellite overpass time and precise orientation of the antennas to acquire the direct signal from the satellite and the backscattered signals off the viewed terrain. The thesis also investigates the characteristics of the acquired signals, which is critical as regards the subsequent processing for imaging and interferometric applications. The hardware limitations, combined with ‘off-nominal’ transmissions of the satellite, necessitate improved range processing of the acquired signals. The thesis expounds the possible range compression techniques, and suggests ways for improved compression, thereby improving the quality of the subsequently processed images

    Passive Multistatic Radar Imaging using an OFDM based Signal of Opportunity

    Get PDF
    This paper demonstrates a proof of concept in using an OFDM-based signal of opportunity for SAR imaging purposes within a passive, multistatic radar construct. Two signal processing methods have been proposed to create phase history data. The same methods are applied in both a simulated software model and an experimental data collection environment to produce simulated SAR images using the CBP imaging algorithm. The images generated from both the experimental and simulated data were observed to be consistent with each other and with expectations in terms of resolution. Coherent addition of the images results in improved image resolution due to the geometric and frequency diversity of the multistatic scenario compared to the individual bistatic pairs

    Comparison of Image Processing Techniques Using Random Noise Radar

    Get PDF
    Radar imaging is a tool used by our military to provide information to enhance situational awareness for both war fighters on the front lines and military leaders planning and forming strategies from afar. Noise radar technology is especially exciting as it has properties of covertness as well as the ability to see through walls, foliage, and other types of cover. In this thesis, AFIT\u27s NoNet was used to generate images utilizing a random noise radar waveform as the transmission signal. The NoNet was arranged in four configurations: arc, line, cluster, and surround. Images were formed using three algorithms: multilateration and the SAR imaging techniques, convolution backprojection, and polar format algorithm. Each configuration was assessed based on image quality, in terms of its resolution, and computational complexity, in terms of its execution time. Experiments revealed tradeoffs between computational complexity and achieving fine resolutions. Depending on image size, the multilateration algorithm was approximately 6 to 35 faster than polar format and 16 to 26 times faster than convolution backprojection. Backprojection yielded images with resolutions up to approximately 11 times finer in range and 18 times finer in cross-range for the surround configuration, over multilateration images. Pixel size in polar format images made comparisons of resolution unusable. This thesis provides information on the performance of imaging algorithms given a configuration of nodes. The information will provide groundwork for future use of the AFIT NoNet as a covertly operating imaging radar in dynamic applications
    • …
    corecore