6,117 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks

    Full text link
    Vehicular Ad Hoc Network (VANET) is an emerging area of wireless ad hoc networks that facilitates ubiquitous connectivity between smart vehicles through Vehicle-to-Vehicle (V2V) or Vehicle-to-Roadside (V2R) and Roadside-to- Vehicle (R2V) communications. This emerging field of technology aims to improve safety of passengers and traffic flow, reduces pollution to the environment and enables in-vehicle entertainment applications. The safety-related applications could reduce accidents by providing drivers with traffic information such as collision avoidances, traffic flow alarms and road surface conditions. Moreover, the passengers could exploit an available infrastructure in order to connect to the internet for infomobility and entertainment applications.Lloret, J.; Ghafoor, KZ.; Rawat, DB.; Xia, F. (2013). Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks. Mobile Networks and Applications. 18(6):749-754. doi:10.1007/s11036-013-0490-7S749754186Lloret J, Canovas A, Catalá A, Garcia M (2013) Group-based protocol and mobility model for VANETs to offer internet access. J Netw Comput Appl 36(3):1027–1038. doi: 10.1016/j.jnca.2012.02.009Khokhar RH, Zia T, Ghafoor KZ, Lloret J, Shiraz M (2013) Realistic and efficient radio propagation model for V2X communications. KSII Trans Internet Inform Syst 7(8):1933–1953. doi: 10.3837/tiis.2013.08.011Ghafoor KZ (2013) Routing protocols in vehicular ad hoc networks: survey and research challenges, Netw Protocol Algorithm 5(4). doi: 10.5296/npa.v5i4.4134Ghafoor KZ, Bakar KA, Lloret J, Ke C-H, Lee KC (2013) Intelligent beaconless geographical routing for urban vehicular environments. Wirel Netw 19(3):345–362. doi: 10.1007/s11276-012-0470-zGhafoor KZ, Bakar KA, Lee K, AL-Hashimi H (2010) A novel delay- and reliability- aware inter-vehicle routing protocol. Netw Protocol Algorithms 2(2):66–88. doi: 10.5296/npa.v2i2.427Dias JAFF, Rodrigues JJPC, Isento JN, Pereira PRBA, Lloret J (2011) Performance assessment of fragmentation mechanisms for vehicular delay-tolerant networks. EURASIP J Wirel Commun Netw 2011(195):1–14. doi: 10.1186/1687-1499-2011-195Zhang D, Yang Z, Raychoudhury V, Chen Z, Lloret J (2013) An energy-efficient routing protocol using movement trend in vehicular Ad-hoc networks. Comput J 58(8):938–946. doi: 10.1093/comjnl/bxt028Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular Ad Hoc networks: a survey. Wirel Pers Commun. doi: 10.1007/s11277-013-1222-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Khamayseh YM (2013) Network size estimation in VANETs. Netw Protocol Algorithm 5(3):136–152. doi: 10.5296/npa.v5i6.3838Rawat DB, Popescu DC, Yan G, Olariu S (2011) Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Trans Parallel Distrib Syst 22(9):1528–1535Yan G, Rawat DB, Bista BB. Provisioning vehicular ad hoc networks with quality of services. Int J Space-Based Situated Comput 2(2):104–111Rawat DB, Bista BB, Yan G, Weigle MC (2011) Securing vehicular ad-hoc networks against malicious drivers: a probabilistic approach, International Conference on Complex, Intelligent, and Software Intensive Systems Pp. 146–151. June 30, 2011Sun W, Xia F, Ma J, Fu T, Sun Y. An optimal ODAM-based broadcast algorithm for vehicular Ad-Hoc Networks. KSII Trans Internet Inform Syst 6(12): 3257–3274Vinel AV, Dudin AN, Andreev SD, Xia F (2010) Performance modeling methodology of emergency dissemination algorithms for vehicular ad-hoc networks, 6th Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Pp. 397–400AL-Hashimi HN, Bakar KA, Ghafoor KZ (2010) Inter-domain proxy mobile IPv6 based vehicular network. Netw Protocol Algorithm 2(4):1–15. doi: 10.5296/npa.v2i4.488Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges, in the book “mobile computing over cloud: technologies, services, and applications”. IGI GlobalYan G, Rawat DB, Bista BB (2012) Towards secure vehicular clouds, Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2012), Pp. 370–375Fernández H, Rubio L, Reig J, Rodrigo-Peñarrocha VM, Valero A (2013) Path loss modeling for vehicular system performance and communication protocols evaluation. Mobile Netw Appl. doi: 10.1007/s11036-013-0463-xAllouche Y, Segal M (2013) A cluster-based beaconing approach in VANETs: near optimal topology via proximity information. Mobile Netw Appl. doi: 10.1007/s11036-013-0468-5Merah AF, Samarah S, Boukerche A, Mammeri A (2013) A sequential patterns data mining approach towards vehicular route prediction in VANETs. Mobile Netw Appl. doi: 10.1007/s11036-013-0459-6Zhang D, Huang H, Zhou J, Xia F, Chen Z (2013) Detecting hot road mobility of vehicular Ad Hoc Networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0467-6El Ajaltouni H, Boukerche A, Mammeri A (2013) A multichannel QoS MAC with dynamic transmit opportunity for. Mobile Netw Appl. doi: 10.1007/s11036-013-0475-6Reñé S, Esparza O, Alins J, Mata-Díaz J, Muñoz JL (2013) VSPLIT: a cross-layer architecture for V2I TCP services over. Mobile Netw Appl. doi: 10.1007/s11036-013-0473-8Blanco B, Liberal F (2013) Amaia Aguirregoitia, application of cognitive techniques to adaptive routing for VANETs in city environments. Mobile Netw Appl. doi: 10.1007/s11036-013-0466-7Kim J, Krunz M (2013) Spectrum-aware beaconless geographical routing protocol for cognitive radio enabled vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0476-5Dias JAFF, Rodrigues JJPC, Isento JNG, Niu J (2013) The impact of cooperative nodes on the performance of vehicular delay-tolerant networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0464-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J, Khokhar R (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Machado S, Ozón J, González AJ, Ghafoor KZ (2013) Structured peer-to-peer real time video transmission over vehicular Ad Hoc networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0461-zLin C, Wu G, Xia F, Yao L (2013) Enhance the attacking efficiency of the node compromise attack in vehicular Ad-hoc network using connected dominating set. Mobile Netw Appl. doi: 10.1007/s11036-013-0469-

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed
    • …
    corecore