56 research outputs found

    Analysis and Evaluation of End-to-End PTP Synchronization for Ethernet-based Fronthaul

    Get PDF
    Provisioning of cost-effective Ethernet-based fronthaul by reusing the LAN infrastructure available in most commercial buildings is challenging predominantly in terms of the required bandwidth and synchronization. In contrast to a synchronous fronthaul, a PTP-based Ethernet network must cope with estimation noise introduced by packet delay variation (PDV) for synchronization recovery. The SYNC packet used for PTP on such networks is expected to suffer from significant PDV due to the fronthaul traffic and other background traffic. Further challenge is when the involved network switches do not support PTP and therefore synchronization can only be done by end-devices. Focusing on this scenario, this paper analyzes the problems that may affect the time-offset estimation accuracy and presents schemes to mitigate these problems. The performance is evaluated through a self-developed FPGA-based testbed and the results suggest that the end-to-end PTP approach can fulfill the less strict time alignment requirements of 3GPP standards if PDV is handled properly

    Testbed Verification of New Fronthaul Technology for 5G Systems

    Get PDF
    The fronthaul for 5th generation mobile systems (and beyond) has evolved with new splits for the radio access network functions defined, and the transport for these split interfaces having very different requirements. Testing of the transport for such split interfaces is reported, and it is shown that an Ethernet fronthaul transport network, which is capable of bringing efficiency gains through statistical multiplexing, can meet stringent latency and latency variation requirements, assuming buffering and playout of the radio waveforms and that timing/synchronization signals are prioritized. An aggregation technique for a 100 Gb/s Ethernet trunk which provides for such timing signals is demonstrated. Real-time monitoring of the Ethernet fronthaul for software-defined networking control and performance optimization is also shown

    Ethernet Fronthaul and Time-Sensitive Networking for 5G and Beyond Mobile Networks

    Get PDF
    Ethernet has been proposed to be used as the transport technology in the future fronthaul network. For this purpose, a model of switched Ethernet architecture is developed and presented in order to characterise the performance of an Ethernet mobile fronthaul network. The effects of traditional queuing regimes, including Strict Priority (SP) and Weighted Round Robin (WRR), on the delay and delay variation of LTE streams under the presence of background Ethernet traffic are investigated using frame inter-arrival delay statistics. The results show the effect of different background traffic rates and frame sizes on the mean and Standard Deviation (STD) of the LTE traffic frame inter-arrival delay and the importance of selecting the most suitable queuing regime based on the priority level and time sensitivity of the different traffic types. While SP can be used with traffic types that require low delay and Frame Delay variation (FDV), this queuing regime does not guarantee that the time sensitive traffic will not encounter an increase in delay and FDV as a result of contention due to the lack of pre-emptive mechanisms. Thus, the need for a queuing regime that can overcome the limitations of traditional queuing regimes is shown. To this extent, Time Sensitive Networking (TSN) for an Ethernet fronthaul network is modelled. Different modelling approaches for a Time Aware Shaper (TAS) based on the IEEE 802.1Qbv standard in Opnet/Riverbed are presented. The TAS model is assumed to be the scheduling entity in an Ethernet-based fronthaul network model, located in both the Ethernet switches and traffic sources. The TAS with/without queuing at the end stations has been presented as well. The performance of the TAS is compared to that of SP and WRR and is quantified through the FDV of the high priority traffic when this contends with lower priority traffic. The results show that with the TAS, contentioninduced FDV can be minimized or even completely removed. Furthermore, variations in the processing times of networking equipment, due to the envisaged softwarization of the next generation mobile network, which can lead to time variation in the generation instances of traffic in the Ethernet fronthaul network (both in the end-nodes and in switches/aggregators), have been considered in the TAS design. The need for a Global Scheduler (GS) and Software Defined Networking (SDN) with TAS is also discussed. An Upper Physical layer functional Split (UPS), specifically a pre-resource mapper split, for an evolved Ethernet fronthaul network is modelled. Using this model and by incorporating additional traffic sources, an investigation of the frame delay and FDV limitations in this evolved fronthaul is carried out. The results show that contention in Ethernet switch output ports causes an increase in the delay and FDV beyond proposed specifications for the UPS and other time sensitive traffic, such as legacy Common Public Radio Interface (CPRI)-type traffic. While TAS can significantly reduce or even remove FDV for UPS traffic and CPRI-type traffic, it is shown that TAS design aspects have to carefully consider the different transmission characteristics, especially the transmission pattern, of the contending traffic flows. For this reason, different traffic allocations within TAS window sections are proposed. Furthermore, it is demonstrated that increased link rates will be important in enabling longer fronthaul fibre spans (more than ten Kilometres fibre spans with ten Gigabit Ethernet links). The results also show that using multiple hops (Ethernet switches/aggregators) in the network can result in a reduction in the amount of UPS traffic that can be received within the delay and FDV specifications. As a result, careful considerations of the fibre span length and the number of hops in the fronthaul network should be made

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    Survey on 5G Second Phase RAN Architectures and Functional Splits

    Get PDF
    The Radio Access Network (RAN) architecture evolves with different generations of mobile communication technologies and forms an indispensable component of the mobile network architecture. The main component of the RAN infrastructure is the base station, which includes a Radio Frequency unit and a baseband unit. The RAN is a collection of base stations connected to the core network to provide coverage through one or more radio access technologies. The advancement towards cloud native networks has led to centralizing the baseband processing of radio signals. There is a trade-off between the advantages of RAN centralization (energy efficiency, power cost reduction, and the cost of the fronthaul) and the complexity of carrying traffic between the data processing unit and distributed antennas. 5G networks hold high potential for adopting the centralized architecture to reduce maintenance costs while reducing deployment costs and improving resilience, reliability, and coordination. Incorporating the concept of virtualization and centralized RAN architecture enables to meet the overall requirements for both the customer and Mobile Network Operator. Functional splitting is one of the key enablers for 5G networks. It supports Centralized RAN, virtualized Radio Access Network, and the recent Open Radio Access Networks. This survey provides a comprehensive tutorial on the paradigms of the RAN architecture evolution, its key features, and implementation challenges. It provides a thorough review of the 3rd Generation Partnership Project functional splitting complemented by associated challenges and potential solutions. The survey also presents an overview of the fronthaul and its requirements and possible solutions for implementation, algorithms, and required tools whilst providing a vision of the evaluation beyond 5G second phase.info:eu-repo/semantics/submittedVersio

    Fronthaul C-RAN baseado em ethernet

    Get PDF
    For the last decade mobile data traffic has been increasing at impressive rates. The proliferation of mobile devices together with high-bandwidth services like video and music streaming, social media and other cloud services have increased the load on top of the mobile network infrastructure. In order to support this massive increase in both users and bandwidth the next generation of mobile telecommunications network - 5G - explores new approaches, like the utilization of new frequency bands and the densification of base stations. This kind of requirements along with the inefficiency of the co-location of base band processing near the radio units encourages a rethink of traditional radio access networks. In this scenario emerges the C-RAN paradigm that intend to centralize all the base band processing (BBU) and replace current base stations for simpler, more efficient and compact solutions that only incorporate the radio front-end and respective radio processing (RRH). In addition to these benefits, centralized processing facilitates virtualization and resource sharing, interference management and cooperative processing technologies. This split of functions brings however, some challenges in respect to the data rates, bandwidth and latency in the link that connects BBUs and RRHs - the fronthaul. Today’s existing standards like CPRI weren’t originally designed for such applications and present some intrinsic bandwidth and flexibility limitations. It’s considered that another approach, based on packet switching, could mitigate some of these problems in addition to bring some advantages such as statistical multiplexing, flexible routing and compatibility with current widespread packet switching networks. They do however, present a number of challenges regarding latency and synchronization. This dissertation work focuses on the study and development of a fronthaul solution based in 10 Gigabit Ethernet over optical fiber. Development is done on top of two development kits based in Field Programmable Gate Array (FPGA) and implemented in an already operational C-RAN test-bed - currently with CPRI based fronthaul - at the Instituto de Telecomunicações - Aveiro.Durante a última década o tráfego de dados móveis tem aumentado a um ritmo impressionante. A proliferação de dispositivos móveis juntamente com serviços consumidores de grande largura de banda como streaming de vídeo e música, redes sociais e serviços na cloud têm colocado grande pressão na infraestrutura da rede móvel. Para suportar este aumento massivo de utilizadores e largura de banda a próxima geração de telecomunicações móveis – o 5G – explora novos conceitos, entre eles a utilização de bandas de frequências mais elevadas e a massificação das estações base. A este tipo de requisitos junta-se o facto da ineficiência da co-localização do processamento junto da unidade de rádio que incentiva a uma restruturação da arquitectura tradicional das redes móveis. Neste cenário surge o paradigma C-RAN, que pretende centralizar todo o processamento em banda base (BBU) e substituir as base stations atuais por soluções mais simples, eficientes e compactas que englobam apenas o processamento da parte de rádio e respetivo front-end de rádio frequência (RRH). Para além destes beneficios, a centralização do processamento facilita a virtualização e partilha de recursos, a gestão da interferência e tecnologias de processamento cooperativo. Esta divisão de funções traz no entanto alguns desafios no que diz respeito a largura de banda, taxas de dados e latências na interligação entre BBUs e RRHs – o fronthaul. Standards atualmente utilizados no link de fronthaul como o CPRI não foram originalmente desenhados para aplicações desta dimensão e apresentam algumas limitações, sendo intrinsecamente pouco flexíveis e eficientes. Acredita-se que outro tipo de abordagem, baseada em comutação de pacotes, poderia mitigar alguns destes problemas para além de trazer vantagens como a multiplexagem estatística, routing flexível e compatibilidade com redes de comutação de pacotes actuais. Apresentam no entanto vários desafios a nível de latência e sincronização associados. Este trabalho de dissertação foca-se então no estudo e desenvolvimento de uma solução para o fronthaul baseada em 10 Gigabit Ethernet sobre fibra ótica. O desenvolvimento será feito em dois kits de desenvolvimento baseados em Field Programmable Gate Array (FPGA) e implementado num demonstrador C-RAN já operacional - com fronthaul atualmente baseado em CPRI - no Instituto de Telecomunicações de Aveiro.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    Uplink data measurement and analysis for 5G eCPRI radio unit

    Get PDF
    Abstract. The new 5G mobile network generation aims to enhance the performance of the cellular network in almost every possible aspect, offering higher data rates, lower latencies, and massive number of network connections. Arguably the most important change from LTE are the new RU-BBU split options for 5G promoted by 3GPP and other organizations. Another big conceptual shift introduced with 5G is the open RAN concept, pushed forward by organizations such as the O-RAN alliance. O-RAN aims to standardize the interfaces between different RAN elements in a way that promotes vendor interoperability and lowers the entry barrier for new equipment suppliers. Moreover, the 7-2x split option standardized by O-RAN has risen as the most important option within the different low layer split options. As the fronthaul interface, O-RAN has selected the packet-based eCPRI protocol, which has been designed to be more flexible and dynamic in terms of transport network and data-rates compared to its predecessor CPRI. Due to being a new interface, tools to analyse data from this interface are lacking. In this thesis, a new, Python-based data analysis tool for UL eCPRI data was created for data quality validation purposes from any O-RAN 7-2x functional split based 5G eCPRI radio unit. The main goal for this was to provide concrete KPIs from captured data, including timing offset, signal power level and error vector magnitude. The tool produces visual and text-based outputs that can be used in both manual and automated testing. The tool has enhanced eCPRI UL datapath testing in radio unit integration teams by providing actual quality metrics and enabling test automation.Uplink datamittaukset ja -analyysi 5G eCPRI radiolla. Tiivistelmä. Uusi 5G mobiiliverkkogeneraatio tuo mukanaan parannuksia lähes kaikkiin mobiiliverkon ominaisuuksiin, tarjoten nopeamman datasiirron, pienemmät viiveet ja valtavat laiteverkostot. Luultavasti tärkein muutos LTE teknologiasta ovat 3GPP:n ja muiden organisaatioiden ehdottamat uudet radion ja systeemimoduulin väliset funktionaaliset jakovaihtoehdot. Toinen huomattava muutos 5G:ssä on O-RAN:in ajama avoimen RAN:in konsepti, jonka tarkoituksena on standardisoida verkkolaitteiden väliset rajapinnat niin, että RAN voidaan rakentaa eri valmistajien laitteista, laskien uusien laitevalmistajien kynnystä astua verkkolaitemarkkinoille. O-RAN:n standardisoima 7-2x funktionaalinen jako on noussut tärkeimmäksi alemman tason jakovaihtoehdoista. Fronthaul rajapinnan protokollaksi O-RAN on valinnut pakettitiedonsiirtoon perustuvan eCPRI:n, joka on suunniteltu dynaamisemmaksi ja joustavammaksi datanopeuksien ja lähetysverkon suhteen kuin edeltävä CPRI protokolla. Uutena protokollana, eCPRI rajapinnalle soveltuvia data-analyysityökaluja ei ole juurikaan saatavilla. Tässä työssä luotiin uusi pythonpohjainen data-analyysityökalu UL suunnan eCPRI datalle, jotta datan laatu voidaan määrittää millä tahansa O-RAN 7-2x funktionaaliseen jakoon perustuvalla 5G eCPRI radiolla. Työkalun päätarkoitus on analysoida ja kuvata datan laatua laskemalla datan ajoitusoffsettia, tehotasoa, sekä EVM:ää. Työkalu tuottaa tulokset visuaalisena ja tekstipohjaisena, jotta analyysia voidaan tehdä niin manuaalisessa kuin automaattisessa testauksessa. Työkalun käyttöönotto on tehostanut UL suunnan dataputken testausta radio-integrointitiimeissä, tarjoten datan laatua kuvaavaa metriikkaa sekä mahdollistaen testauksen automatisoinnin
    corecore