629 research outputs found

    Analysis and Detection of Pathological Voice using Glottal Source Features

    Full text link
    Automatic detection of voice pathology enables objective assessment and earlier intervention for the diagnosis. This study provides a systematic analysis of glottal source features and investigates their effectiveness in voice pathology detection. Glottal source features are extracted using glottal flows estimated with the quasi-closed phase (QCP) glottal inverse filtering method, using approximate glottal source signals computed with the zero frequency filtering (ZFF) method, and using acoustic voice signals directly. In addition, we propose to derive mel-frequency cepstral coefficients (MFCCs) from the glottal source waveforms computed by QCP and ZFF to effectively capture the variations in glottal source spectra of pathological voice. Experiments were carried out using two databases, the Hospital Universitario Principe de Asturias (HUPA) database and the Saarbrucken Voice Disorders (SVD) database. Analysis of features revealed that the glottal source contains information that discriminates normal and pathological voice. Pathology detection experiments were carried out using support vector machine (SVM). From the detection experiments it was observed that the performance achieved with the studied glottal source features is comparable or better than that of conventional MFCCs and perceptual linear prediction (PLP) features. The best detection performance was achieved when the glottal source features were combined with the conventional MFCCs and PLP features, which indicates the complementary nature of the features

    Glottal-Source Spectral Biometry for Voice Characterization

    Get PDF
    The biometric signature derived from the estimation of the power spectral density singularities of a speaker’s glottal source is described in the present work. This consists in the collection of peak-trough profiles found in the spectral density, as related to the biomechanics of the vocal folds. Samples of parameter estimations from a set of 100 normophonic (pathology-free) speakers are produced. Mapping the set of speaker’s samples to a manifold defined by Principal Component Analysis and clustering them by k-means in terms of the most relevant principal components shows the separation of speakers by gender. This means that the proposed signature conveys relevant speaker’s metainformation, which may be useful in security and forensic applications for which contextual side information is considered relevant

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Estimation of glottal closure instants in voiced speech using the DYPSA algorithm

    Get PDF
    Published versio

    Glottal Biometric Features: Are Pathological Voice Studies appliable to Voice Biometry?

    Get PDF
    The purpose of the present paper is to introduce a methodology successfully used already in voice pathology detection for its possible adaptation to biometric speaker characterization as well. For such, the behavior of the same GMM classifiers used in the detection of pathology will be exploited. The work will show specific cases derived from running speech typically used in NIST contests against a Universal Background Model built from the population of normophonic subjects in specific vs general evaluation paradigms. Results are contrasted against a set of impostors derived from the same population of normophonic subjects. The relevance of the parameters used in the study will also be discusse
    corecore