1,364 research outputs found

    Ultra Low-Complexity Detection of Spectrum Holes in Compressed Wideband Spectrum Sensing

    Full text link
    Wideband spectrum sensing is a significant challenge in cognitive radios (CRs) due to requiring very high-speed analog- to-digital converters (ADCs), operating at or above the Nyquist rate. Here, we propose a very low-complexity zero-block detection scheme that can detect a large fraction of spectrum holes from the sub-Nyquist samples, even when the undersampling ratio is very small. The scheme is based on a block sparse sensing matrix, which is implemented through the design of a novel analog-to- information converter (AIC). The proposed scheme identifies some measurements as being zero and then verifies the sub-channels associated with them as being vacant. Analytical and simulation results are presented that demonstrate the effectiveness of the proposed method in reliable detection of spectrum holes with complexity much lower than existing schemes. This work also introduces a new paradigm in compressed sensing where one is interested in reliable detection of (some of the) zero blocks rather than the recovery of the whole block sparse signal.Comment: 7 pages, 5 figure

    Graph-based techniques for compression and reconstruction of sparse sources

    Get PDF
    The main goal of this thesis is to develop lossless compression schemes for analog and binary sources. All the considered compression schemes have as common feature that the encoder can be represented by a graph, so they can be studied employing tools from modern coding theory. In particular, this thesis is focused on two compression problems: the group testing and the noiseless compressed sensing problems. Although both problems may seem unrelated, in the thesis they are shown to be very close. Furthermore, group testing has the same mathematical formulation as non-linear binary source compression schemes that use the OR operator. In this thesis, the similarities between these problems are exploited. The group testing problem is aimed at identifying the defective subjects of a population with as few tests as possible. Group testing schemes can be divided into two groups: adaptive and non-adaptive group testing schemes. The former schemes generate tests sequentially and exploit the partial decoding results to attempt to reduce the overall number of tests required to label all members of the population, whereas non-adaptive schemes perform all the test in parallel and attempt to label as many subjects as possible. Our contributions to the group testing problem are both theoretical and practical. We propose a novel adaptive scheme aimed to efficiently perform the testing process. Furthermore, we develop tools to predict the performance of both adaptive and non-adaptive schemes when the number of subjects to be tested is large. These tools allow to characterize the performance of adaptive and non-adaptive group testing schemes without simulating them. The goal of the noiseless compressed sensing problem is to retrieve a signal from its lineal projection version in a lower-dimensional space. This can be done only whenever the amount of null components of the original signal is large enough. Compressed sensing deals with the design of sampling schemes and reconstruction algorithms that manage to reconstruct the original signal vector with as few samples as possible. In this thesis we pose the compressed sensing problem within a probabilistic framework, as opposed to the classical compression sensing formulation. Recent results in the state of the art show that this approach is more efficient than the classical one. Our contributions to noiseless compressed sensing are both theoretical and practical. We deduce a necessary and sufficient matrix design condition to guarantee that the reconstruction is lossless. Regarding the design of practical schemes, we propose two novel reconstruction algorithms based on message passing over the sparse representation of the matrix, one of them with very low computational complexity.El objetivo principal de la tesis es el desarrollo de esquemas de compresión sin pérdidas para fuentes analógicas y binarias. Los esquemas analizados tienen en común la representación del compresor mediante un grafo; esto ha permitido emplear en su estudio las herramientas de codificación modernas. Más concretamente la tesis estudia dos problemas de compresión en particular: el diseño de experimentos de testeo comprimido de poblaciones (de sangre, de presencia de elementos contaminantes, secuenciado de ADN, etcétera) y el muestreo comprimido de señales reales en ausencia de ruido. A pesar de que a primera vista parezcan problemas totalmente diferentes, en la tesis mostramos que están muy relacionados. Adicionalmente, el problema de testeo comprimido de poblaciones tiene una formulación matemática idéntica a los códigos de compresión binarios no lineales basados en puertas OR. En la tesis se explotan las similitudes entre todos estos problemas. Existen dos aproximaciones al testeo de poblaciones: el testeo adaptativo y el no adaptativo. El primero realiza los test de forma secuencial y explota los resultados parciales de estos para intentar reducir el número total de test necesarios, mientras que el segundo hace todos los test en bloque e intenta extraer el máximo de datos posibles de los test. Nuestras contribuciones al problema de testeo comprimido han sido tanto teóricas como prácticas. Hemos propuesto un nuevo esquema adaptativo para realizar eficientemente el proceso de testeo. Además hemos desarrollado herramientas que permiten predecir el comportamiento tanto de los esquemas adaptativos como de los esquemas no adaptativos cuando el número de sujetos a testear es elevado. Estas herramientas permiten anticipar las prestaciones de los esquemas de testeo sin necesidad de simularlos. El objetivo del muestreo comprimido es recuperar una señal a partir de su proyección lineal en un espacio de menor dimensión. Esto sólo es posible si se asume que la señal original tiene muchas componentes que son cero. El problema versa sobre el diseño de matrices y algoritmos de reconstrucción que permitan implementar esquemas de muestreo y reconstrucción con un número mínimo de muestras. A diferencia de la formulación clásica de muestreo comprimido, en esta tesis se ha empleado un modelado probabilístico de la señal. Referencias recientes en la literatura demuestran que este enfoque permite conseguir esquemas de compresión y descompresión más eficientes. Nuestras contribuciones en el campo de muestreo comprimido de fuentes analógicas dispersas han sido también teóricas y prácticas. Por un lado, la deducción de la condición necesaria y suficiente que debe garantizar la matriz de muestreo para garantizar que se puede reconstruir unívocamente la secuencia de fuente. Por otro lado, hemos propuesto dos algoritmos, uno de ellos de baja complejidad computacional, que permiten reconstruir la señal original basados en paso de mensajes entre los nodos de la representación gráfica de la matriz de proyección.Postprint (published version

    Peeling Decoding of LDPC Codes with Applications in Compressed Sensing

    Get PDF
    We present a new approach for the analysis of iterative peeling decoding recovery algorithms in the context of Low-Density Parity-Check (LDPC) codes and compressed sensing. The iterative recovery algorithm is particularly interesting for its low measurement cost and low computational complexity. The asymptotic analysis can track the evolution of the fraction of unrecovered signal elements in each iteration, which is similar to the well-known density evolution analysis in the context of LDPC decoding algorithm. Our analysis shows that there exists a threshold on the density factor; if under this threshold, the recovery algorithm is successful; otherwise it will fail. Simulation results are also provided for verifying the agreement between the proposed asymptotic analysis and recovery algorithm. Compared with existing works of peeling decoding algorithm, focusing on the failure probability of the recovery algorithm, our proposed approach gives accurate evolution of performance with different parameters of measurement matrices and is easy to implement. We also show that the peeling decoding algorithm performs better than other schemes based on LDPC codes

    When Is network lasso accurate?

    Get PDF
    The “least absolute shrinkage and selection operator” (Lasso) method has been adapted recently for network-structured datasets. In particular, this network Lasso method allows to learn graph signals from a small number of noisy signal samples by using the total variation of a graph signal for regularization. While efficient and scalable implementations of the network Lasso are available, only little is known about the conditions on the underlying network structure which ensure network Lasso to be accurate. By leveraging concepts of compressed sensing, we address this gap and derive precise conditions on the underlying network topology and sampling set which guarantee the network Lasso for a particular loss function to deliver an accurate estimate of the entire underlying graph signal. We also quantify the error incurred by network Lasso in terms of two constants which reflect the connectivity of the sampled nodes

    LDPC Codes over Large Alphabets and Their Applications to Compressed Sensing and Flash Memory

    Get PDF
    This dissertation is mainly focused on the analysis, design and optimization of Low-density parity-check (LDPC) codes over channels with large alphabet sets and the applications on compressed sensing (CS) and flash memories. Compared to belief-propagation (BP) decoding, verification-based (VB) decoding has significantly lower complexity and near optimal performance when the channel alphabet set is large. We analyze the verification-based decoding of LDPC codes over the q-ary symmetric channel (q-SC) and propose the list-message-passing (LMP) decoding which off ers a good tradeoff between complexity and decoding threshold. We prove that LDPC codes with LMP decoding achieve the capacity of the q-SC when q and the block length go to infinity. CS is a newly emerging area which is closely related to coding theory and information theory. CS deals with the sparse signal recovery problem with small number of linear measurements. One big challenge in CS literature is to reduce the number of measurements required to reconstruct the sparse signal. In this dissertation, we show that LDPC codes with verification-based decoding can be applied to CS system with surprisingly good performance and low complexity. We also discuss modulation codes and error correcting codes (ECC’s) design for flash memories. We design asymptotically optimal modulation codes and discuss their improvement by using the idea from load-balancing theory. We also design LDPC codes over integer rings and fields with large alphabet sets for flash memories

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times
    corecore