496 research outputs found

    On BICM receivers for TCM transmission

    Get PDF
    Recent results have shown that the performance of bit-interleaved coded modulation (BICM) using convolutional codes in nonfading channels can be significantly improved when the interleaver takes a trivial form (BICM-T), i.e., when it does not interleave the bits at all. In this paper, we give a formal explanation for these results and show that BICM-T is in fact the combination of a TCM transmitter and a BICM receiver. To predict the performance of BICM-T, a new type of distance spectrum for convolutional codes is introduced, analytical bounds based on this spectrum are developed, and asymptotic approximations are also presented. It is shown that the minimum distance of the code is not the relevant optimization criterion for BICM-T. Optimal convolutional codes for different constrain lengths are tabulated and asymptotic gains of about 2 dB are obtained. These gains are found to be the same as those obtained by Ungerboeck's one-dimensional trellis coded modulation (1D-TCM), and therefore, in nonfading channels, BICM-T is shown to be asymptotically as good as 1D-TCM.Comment: Submitted to the IEEE Transactions on Communication

    Bit-Interleaved Coded Modulation Revisited: A Mismatched Decoding Perspective

    Get PDF
    We revisit the information-theoretic analysis of bit-interleaved coded modulation (BICM) by modeling the BICM decoder as a mismatched decoder. The mismatched decoding model is well-defined for finite, yet arbitrary, block lengths, and naturally captures the channel memory among the bits belonging to the same symbol. We give two independent proofs of the achievability of the BICM capacity calculated by Caire et al. where BICM was modeled as a set of independent parallel binary-input channels whose output is the bitwise log-likelihood ratio. Our first achievability proof uses typical sequences, and shows that due to the random coding construction, the interleaver is not required. The second proof is based on the random coding error exponents with mismatched decoding, where the largest achievable rate is the generalized mutual information. We show that the generalized mutual information of the mismatched decoder coincides with the infinite-interleaver BICM capacity. We also show that the error exponent -and hence the cutoff rate- of the BICM mismatched decoder is upper bounded by that of coded modulation and may thus be lower than in the infinite-interleaved model. We also consider the mutual information appearing in the analysis of iterative decoding of BICM with EXIT charts. We show that the corresponding symbol metric has knowledge of the transmitted symbol and the EXIT mutual information admits a representation as a pseudo-generalized mutual information, which is in general not achievable. A different symbol decoding metric, for which the extrinsic side information refers to the hypothesized symbol, induces a generalized mutual information lower than the coded modulation capacity.Comment: submitted to the IEEE Transactions on Information Theory. Conference version in 2008 IEEE International Symposium on Information Theory, Toronto, Canada, July 200

    Towards Fully Optimized BICM Transceivers

    Get PDF
    Bit-interleaved coded modulation (BICM) transceivers often use equally spaced constellations and a random interleaver. In this paper, we propose a new BICM design, which considers hierarchical (nonequally spaced) constellations, a bit-level multiplexer, and multiple interleavers. It is shown that this new scheme increases the degrees of freedom that can be exploited in order to improve its performance. Analytical bounds on the bit error rate (BER) of the system in terms of the constellation parameters and the multiplexing rules are developed for the additive white Gaussian Noise (AWGN) and Nakagami-mm fading channels. These bounds are then used to design the BICM transceiver. Numerical results show that, compared to conventional BICM designs, and for a target BER of 10−610^{-6}, gains up to 3 dB in the AWGN channel are obtained. For fading channels, the gains depend on the fading parameter, and reach 2 dB for a target BER of 10−710^{-7} and m=5m=5.Comment: Submitted to the IEEE Transactions on Communication

    On the Information Loss of the Max-Log Approximation in BICM Systems

    Full text link
    We present a comprehensive study of the information rate loss of the max-log approximation for MM-ary pulse-amplitude modulation (PAM) in a bit-interleaved coded modulation (BICM) system. It is widely assumed that the calculation of L-values using the max-log approximation leads to an information loss. We prove that this assumption is correct for all MM-PAM constellations and labelings with the exception of a symmetric 4-PAM constellation labeled with a Gray code. We also show that for max-log L-values, the BICM generalized mutual information (GMI), which is an achievable rate for a standard BICM decoder, is too pessimistic. In particular, it is proved that the so-called "harmonized" GMI, which can be seen as the sum of bit-level GMIs, is achievable without any modifications to the decoder. We then study how bit-level channel symmetrization and mixing affect the mutual information (MI) and the GMI for max-log L-values. Our results show that these operations, which are often used when analyzing BICM systems, preserve the GMI. However, this is not necessarily the case when the MI is considered. Necessary and sufficient conditions under which these operations preserve the MI are provided

    Signal Shaping for BICM at Low SNR

    Get PDF
    The mutual information of bit-interleaved coded modulation (BICM) systems, sometimes called the BICM capacity, is investigated at low signal-to-noise ratio (SNR), i.e., in the wideband regime. A new linear transform that depends on bits' probabilities is introduced. This transform is used to prove the asymptotical equivalence between certain BICM systems with uniform and nonuniform input distributions. Using known results for BICM systems with a uniform input distribution, we completely characterize the combinations of input alphabet, input distribution, and binary labeling that achieve the Shannon limit -1.59 dB. The main conclusion is that a BICM system achieves the Shannon limit at low SNR if and only if it can be represented as a zero-mean linear projection of a hypercube, which is the same condition as for uniform input distributions. Hence, probabilistic shaping offers no extra degrees of freedom to optimize the low-SNR mutual information of BICM systems, in addition to what is provided by geometrical shaping. These analytical conclusions are confirmed by numerical results, which also show that for a fixed input alphabet, probabilistic shaping of BICM can improve the mutual information in the low and medium SNR range over any coded modulation system with a uniform input distribution

    On the Convergence Speed of Turbo Demodulation with Turbo Decoding

    Full text link
    Iterative processing is widely adopted nowadays in modern wireless receivers for advanced channel codes like turbo and LDPC codes. Extension of this principle with an additional iterative feedback loop to the demapping function has proven to provide substantial error performance gain. However, the adoption of iterative demodulation with turbo decoding is constrained by the additional implied implementation complexity, heavily impacting latency and power consumption. In this paper, we analyze the convergence speed of these combined two iterative processes in order to determine the exact required number of iterations at each level. Extrinsic information transfer (EXIT) charts are used for a thorough analysis at different modulation orders and code rates. An original iteration scheduling is proposed reducing two demapping iterations with reasonable performance loss of less than 0.15 dB. Analyzing and normalizing the computational and memory access complexity, which directly impact latency and power consumption, demonstrates the considerable gains of the proposed scheduling and the promising contributions of the proposed analysis.Comment: Submitted to IEEE Transactions on Signal Processing on April 27, 201

    Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels

    No full text
    Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity
    • 

    corecore