62 research outputs found

    Carry Your Fault: A Fault Propagation Attack on Side-Channel Protected LWE-based KEM

    Get PDF
    Post-quantum cryptographic (PQC) algorithms, especially those based on the learning with errors (LWE) problem, have been subjected to several physical attacks in the recent past. Although the attacks broadly belong to two classes -- passive side-channel attacks and active fault attacks, the attack strategies vary significantly due to the inherent complexities of such algorithms. Exploring further attack surfaces is, therefore, an important step for eventually securing the deployment of these algorithms. Also, it is important to test the robustness of the already proposed countermeasures in this regard. In this work, we propose a new fault attack on side-channel secure masked implementation of LWE-based key-encapsulation mechanisms (KEMs) exploiting fault propagation. The attack typically originates due to an algorithmic modification widely used to enable masking, namely the Arithmetic-to-Boolean (A2B\mathtt{A2B}) conversion. We exploit the data dependency of the adder carry chain in A2B\mathtt{A2B} and extract sensitive information, albeit masking (of arbitrary order) being present. As a practical demonstration of the exploitability of this information leakage, we show key recovery attacks of Kyber, although the leakage also exists for other schemes like Saber. The attack on Kyber targets the decapsulation module and utilizes Belief Propagation (BP) for key recovery. To the best of our knowledge, it is the first attack exploiting an algorithmic component introduced to ease masking rather than only exploiting the randomness introduced by masking to obtain desired faults (as done by Delvaux). Finally, we performed both simulated and electromagnetic (EM) fault-based practical validation of the attack for an open-source first-order secure Kyber implementation running on an STM32 platform

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    Advanced Information Processing Methods and Their Applications

    Get PDF
    This Special Issue has collected and presented breakthrough research on information processing methods and their applications. Particular attention is paid to the study of the mathematical foundations of information processing methods, quantum computing, artificial intelligence, digital image processing, and the use of information technologies in medicine

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field

    Improving Compute & Data Efficiency of Flexible Architectures

    Get PDF

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Siwa: A custom RISC-V based system on chip (SOC) for low power medical applications

    Get PDF
    This work introduces the development of Siwa, a RISC-V RV32I 32-bit based core, intended as a flexible control platform for highly integrated implantable biomedical applications, and implemented on a commercial 0.18 m high voltage (HV) CMOS technology. Simulations show that Siwa can outperform commercial micro-controllers commonly used in the medical industry as control units for implantable devices, with energy requirements below the 50 pJ per clock cycle.Agencia Nacional de Investigación e Innovació

    A Low-Area, Energy-Efficient 64-Bit Reconfigurable Carry Select Modified Tree-Based Adder for Media Signal Processing

    Get PDF
    Multimedia systems play an essential part in our daily lives and have drastically improved the quality of life over time. Multimedia devices like cellphones, radios, televisions, and computers require low-area and low-power reconfigurable adders to process greedy computation algorithms for the real-time audio/video signal and image processing such as discrete cosine transform, inverse discrete cosine transform, and fast Fourier transform, etc. In this thesis, a novel 64-bit reconfigurable adder is proposed and implemented to reduce the area and power consumption. This adder can be run-time reconfigured to different reconfigurable word lengths, i.e., one 64- bit, two 32-bits, four 16-bits or eight 8-bits addition, depending on the partition signal command. A Carry Select Modified Tree (CSMT) based adder is used in the reconfigurable adder to reduce the area by 22 % and the power consumption by 47 % when compared to the conventional design. The proposed adder, implemented in 180 nm CMOS technology at 1.8-volt supply, has a worst-case Delay of 20.67 nanoseconds with an overall area of 36,417 μm² and power consumption of 447.93 μW
    • …
    corecore