49 research outputs found

    A Generative Model for Score Normalization in Speaker Recognition

    Full text link
    We propose a theoretical framework for thinking about score normalization, which confirms that normalization is not needed under (admittedly fragile) ideal conditions. If, however, these conditions are not met, e.g. under data-set shift between training and runtime, our theory reveals dependencies between scores that could be exploited by strategies such as score normalization. Indeed, it has been demonstrated over and over experimentally, that various ad-hoc score normalization recipes do work. We present a first attempt at using probability theory to design a generative score-space normalization model which gives similar improvements to ZT-norm on the text-dependent RSR 2015 database

    The Idlab Voxsrc-20 Submission: Large Margin Fine-Tuning and Quality-Aware Score Calibration in DNN Based Speaker Verification

    Get PDF
    In this paper we propose and analyse a large margin fine-tuning strategy and a quality-aware score calibration in text-independent speaker verification. Large margin fine-tuning is a secondary training stage for DNN based speaker verification systems trained with margin-based loss functions. It enables the network to create more robust speaker embeddings by enabling the use of longer training utterances in combination with a more aggressive margin penalty. Score calibration is a common practice in speaker verification systems to map output scores to well-calibrated log-likelihood-ratios, which can be converted to interpretable probabilities. By including quality features in the calibration system, the decision thresholds of the evaluation metrics become quality-dependent and more consistent across varying trial conditions. Applying both enhancements on the ECAPA-TDNN architecture leads to state-of-the-art results on all publicly available VoxCeleb1 test sets and contributed to our winning submissions in the supervised verification tracks of the VoxCeleb Speaker Recognition Challenge 2020.Comment: proceedings of ICASSP 202

    Speaker Recognition in Unconstrained Environments

    Get PDF
    Speaker recognition is applied in smart home devices, interactive voice response systems, call centers, online banking and payment solutions as well as in forensic scenarios. This dissertation is concerned with speaker recognition systems in unconstrained environments. Before this dissertation, research on making better decisions in unconstrained environments was insufficient. Aside from decision making, unconstrained environments imply two other subjects: security and privacy. Within the scope of this dissertation, these research subjects are regarded as both security against short-term replay attacks and privacy preservation within state-of-the-art biometric voice comparators in the light of a potential leak of biometric data. The aforementioned research subjects are united in this dissertation to sustain good decision making processes facing uncertainty from varying signal quality and to strengthen security as well as preserve privacy. Conventionally, biometric comparators are trained to classify between mated and non-mated reference,--,probe pairs under idealistic conditions but are expected to operate well in the real world. However, the more the voice signal quality degrades, the more erroneous decisions are made. The severity of their impact depends on the requirements of a biometric application. In this dissertation, quality estimates are proposed and employed for the purpose of making better decisions on average in a formalized way (quantitative method), while the specifications of decision requirements of a biometric application remain unknown. By using the Bayesian decision framework, the specification of application-depending decision requirements is formalized, outlining operating points: the decision thresholds. The assessed quality conditions combine ambient and biometric noise, both of which occurring in commercial as well as in forensic application scenarios. Dual-use (civil and governmental) technology is investigated. As it seems unfeasible to train systems for every possible signal degradation, a low amount of quality conditions is used. After examining the impact of degrading signal quality on biometric feature extraction, the extraction is assumed ideal in order to conduct a fair benchmark. This dissertation proposes and investigates methods for propagating information about quality to decision making. By employing quality estimates, a biometric system's output (comparison scores) is normalized in order to ensure that each score encodes the least-favorable decision trade-off in its value. Application development is segregated from requirement specification. Furthermore, class discrimination and score calibration performance is improved over all decision requirements for real world applications. In contrast to the ISOIEC 19795-1:2006 standard on biometric performance (error rates), this dissertation is based on biometric inference for probabilistic decision making (subject to prior probabilities and cost terms). This dissertation elaborates on the paradigm shift from requirements by error rates to requirements by beliefs in priors and costs. Binary decision error trade-off plots are proposed, interrelating error rates with prior and cost beliefs, i.e., formalized decision requirements. Verbal tags are introduced to summarize categories of least-favorable decisions: the plot's canvas follows from Bayesian decision theory. Empirical error rates are plotted, encoding categories of decision trade-offs by line styles. Performance is visualized in the latent decision subspace for evaluating empirical performance regarding changes in prior and cost based decision requirements. Security against short-term audio replay attacks (a collage of sound units such as phonemes and syllables) is strengthened. The unit-selection attack is posed by the ASVspoof 2015 challenge (English speech data), representing the most difficult to detect voice presentation attack of this challenge. In this dissertation, unit-selection attacks are created for German speech data, where support vector machine and Gaussian mixture model classifiers are trained to detect collage edges in speech representations based on wavelet and Fourier analyses. Competitive results are reached compared to the challenged submissions. Homomorphic encryption is proposed to preserve the privacy of biometric information in the case of database leakage. In this dissertation, log-likelihood ratio scores, representing biometric evidence objectively, are computed in the latent biometric subspace. Conventional comparators rely on the feature extraction to ideally represent biometric information, latent subspace comparators are trained to find ideal representations of the biometric information in voice reference and probe samples to be compared. Two protocols are proposed for the the two-covariance comparison model, a special case of probabilistic linear discriminant analysis. Log-likelihood ratio scores are computed in the encrypted domain based on encrypted representations of the biometric reference and probe. As a consequence, the biometric information conveyed in voice samples is, in contrast to many existing protection schemes, stored protected and without information loss. The first protocol preserves privacy of end-users, requiring one public/private key pair per biometric application. The latter protocol preserves privacy of end-users and comparator vendors with two key pairs. Comparators estimate the biometric evidence in the latent subspace, such that the subspace model requires data protection as well. In both protocols, log-likelihood ratio based decision making meets the requirements of the ISOIEC 24745:2011 biometric information protection standard in terms of unlinkability, irreversibility, and renewability properties of the protected voice data

    Game-Theoretic Foundations for Forming Trusted Coalitions of Multi-Cloud Services in the Presence of Active and Passive Attacks

    Get PDF
    The prominence of cloud computing as a common paradigm for offering Web-based services has led to an unprecedented proliferation in the number of services that are deployed in cloud data centers. In parallel, services' communities and cloud federations have gained an increasing interest in the recent past years due to their ability to facilitate the discovery, composition, and resource scaling issues in large-scale services' markets. The problem is that the existing community and federation formation solutions deal with services as traditional software systems and overlook the fact that these services are often being offered as part of the cloud computing technology, which poses additional challenges at the architectural, business, and security levels. The motivation of this thesis stems from four main observations/research gaps that we have drawn through our literature reviews and/or experiments, which are: (1) leading cloud services such as Google and Amazon do not have incentives to group themselves into communities/federations using the existing community/federation formation solutions; (2) it is quite difficult to find a central entity that can manage the community/federation formation process in a multi-cloud environment; (3) if we allow services to rationally select their communities/federations without considering their trust relationships, these services might have incentives to structure themselves into communities/federations consisting of a large number of malicious services; and (4) the existing intrusion detection solutions in the domain of cloud computing are still ineffective in capturing advanced multi-type distributed attacks initiated by communities/federations of attackers since they overlook the attacker's strategies in their design and ignore the cloud system's resource constraints. This thesis aims to address these gaps by (1) proposing a business-oriented community formation model that accounts for the business potential of the services in the formation process to motivate the participation of services of all business capabilities, (2) introducing an inter-cloud trust framework that allows services deployed in one or disparate cloud centers to build credible trust relationships toward each other, while overcoming the collusion attacks that occur to mislead trust results even in extreme cases wherein attackers form the majority, (3) designing a trust-based game theoretical model that enables services to distributively form trustworthy multi-cloud communities wherein the number of malicious services is minimal, (4) proposing an intra-cloud trust framework that allows the cloud system to build credible trust relationships toward the guest Virtual Machines (VMs) running cloud-based services using objective and subjective trust sources, (5) designing and solving a trust-based maxmin game theoretical model that allows the cloud system to optimally distribute the detection load among VMs within a limited budget of resources, while considering Distributed Denial of Service (DDoS) attacks as a practical scenario, and (6) putting forward a resource-aware comprehensive detection and prevention system that is able to capture and prevent advanced simultaneous multi-type attacks within a limited amount of resources. We conclude the thesis by uncovering some persisting research gaps that need further study and investigation in the future

    Diets, Foods and Food Components Effect on Dyslipidemia

    Get PDF
    Dyslipidemia, and particularly hypercholesterolemia, remains a main cardiovascular disease risk factor, partly reversible with the improvement of life-style, including dietary, habits. Even when a pharmacological treatment is begun, dietary support to lipid-lowering is always desired. This book will provide a selection of new evidence on the possible lipid-lowering effects of some dietary and medicinal plant components, reporting some interesting reviews, experimental data and results from clinical trials. The book is adapted for experts in nutrition but also for all scientists involved in cardiovascular disease prevention

    Actas de la XIII Reunión Española sobre Criptología y Seguridad de la Información RECSI XIII : Alicante, 2-5 de septiembre de 2014

    Get PDF
    Si tuviéramos que elegir un conjunto de palabras clave para definir la sociedad actual, sin duda el término información sería uno de los más representativos. Vivimos en un mundo caracterizado por un continuo flujo de información en el que las Tecnologías de la Información y Comunicación (TIC) y las Redes Sociales desempeñan un papel relevante. En la Sociedad de la Información se generan gran variedad de datos en formato digital, siendo la protección de los mismos frente a accesos y usos no autorizados el objetivo principal de lo que conocemos como Seguridad de la Información. Si bien la Criptología es una herramienta tecnológica básica, dedicada al desarrollo y análisis de sistemas y protocolos que garanticen la seguridad de los datos, el espectro de tecnologías que intervienen en la protección de la información es amplio y abarca diferentes disciplinas. Una de las características de esta ciencia es su rápida y constante evolución, motivada en parte por los continuos avances que se producen en el terreno de la computación, especialmente en las últimas décadas. Sistemas, protocolos y herramientas en general considerados seguros en la actualidad dejarán de serlo en un futuro más o menos cercano, lo que hace imprescindible el desarrollo de nuevas herramientas que garanticen, de forma eficiente, los necesarios niveles de seguridad. La Reunión Española sobre Criptología y Seguridad de la Información (RECSI) es el congreso científico español de referencia en el ámbito de la Criptología y la Seguridad en las TIC, en el que se dan cita periódicamente los principales investigadores españoles y de otras nacionalidades en esta disciplina, con el fin de compartir los resultados más recientes de su investigación. Del 2 al 5 de septiembre de 2014 se celebrará la decimotercera edición en la ciudad de Alicante, organizada por el grupo de Criptología y Seguridad Computacional de la Universidad de Alicante. Las anteriores ediciones tuvieron lugar en Palma de Mallorca (1991), Madrid (1992), Barcelona (1994), Valladolid (1996), Torremolinos (1998), Santa Cruz de Tenerife (2000), Oviedo (2002), Leganés (2004), Barcelona (2006), Salamanca (2008), Tarragona (2010) y San Sebastián (2012)

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation
    corecore