1,405 research outputs found

    Design and Development of an Automated Mobile Manipulator for Industrial Applications

    Get PDF
    This thesis presents the modeling, control and coordination of an automated mobile manipulator. A mobile manipulator in this investigation consists of a robotic manipulator and a mobile platform resulting in a hybrid mechanism that includes a mobile platform for locomotion and a manipulator arm for manipulation. The structural complexity of a mobile manipulator is the main challenging issue because it includes several problems like adapting a manipulator and a redundancy mobile platform at non-holonomic constraints. The objective of the thesis is to fabricate an automated mobile manipulator and develop control algorithms that effectively coordinate the arm manipulation and mobility of mobile platform. The research work starts with deriving the motion equations of mobile manipulators. The derivation introduced here makes use of motion equations of robot manipulators and mobile platforms separately, and then integrated them as one entity. The kinematic analysis is performed in two ways namely forward & inverse kinematics. The motion analysis is performed for various WMPs such as, Omnidirectional WMP, Differential three WMP, Three wheeled omni-steer WMP, Tricycle WMP and Two steer WMP. From the obtained motion analysis results, Differential three WMP is chosen as the mobile platform for the developed mobile manipulator. Later motion analysis is carried out for 4-axis articulated arm. Danvit-Hartenberg representation is implemented to perform forward kinematic analysis. Because of this representation, one can easily understand the kinematic equation for a robotic arm. From the obtained arm equation, Inverse kinematic model for the 4-axis robotic manipulator is developed. Motion planning of an intelligent mobile robot is one of the most vital issues in the field of robotics, which includes the generation of optimal collision free trajectories within its work space and finally reaches its target position. For solving this problem, two evolutionary algorithms namely Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) are introduced to move the mobile platform in intelligent manner. The developed algorithms are effective in avoiding obstacles, trap situations and generating optimal paths within its unknown environments. Once the robot reaches its goal (within the work space of the manipulator), the manipulator will generate its trajectories according to task assigned by the user. Simulation analyses are performed using MATLAB-2010 in order to validate the feasibility of the developed methodologies in various unknown environments. Additionally, experiments are carried out on an automated mobile manipulator. ATmega16 Microcontrollers are used to enable the entire robot system movement in desired trajectories by means of robot interface application program. The control program is developed in robot software (Keil) to control the mobile manipulator servomotors via a serial connection through a personal computer. To support the proposed control algorithms both simulation and experimental results are presented. Moreover, validation of the developed methodologies has been made with the ER-400 mobile platform

    A comprehensive performance evaluation of different mobile manipulators used as displaceable 3D printers of building elements for the construction industry

    Get PDF
    The construction industry is currently technologically challenged to incorporate new developments for enhancing the process, such as the use of 3D printing for complex building structures,which is the aim of this brief. To do so, we show a systematic study regarding the usability and performance of mobile manipulators as displaceable 3D printing machinery in construction sites,with emphasis on the three main different existing mobile platforms: the car-like, the unicycleand the omnidirectional (mecanum wheeled), with an UR5 manipulator on them. To evaluate its performance, we propose the printing of the following building elements: helical, square, circular and mesh, with different sizes. As metrics, we consider the total control effort observed in the robots and the total tracking error associated with the energy consumed in the activity to get a more sustainable process. In addition, to further test our work, we constrained the robot workspace thus resemblingreal life construction sites. In general, the statistical results show that the omnidirectional platform presents the best results –lowest tracking error and lowest control effort– for circular, helicoidal and mesh building elements; and car-like platform shows the best results for square-like building element. Then,an innovative performance analysis is achieved for the printing of building elements, with a contribution to the reduction of energy consumptio

    Mobile manipulator robot: omni 3 wheels manipulator robot

    Get PDF
    Mestrado de dupla diplomação com a Université Libre de TunisRobots are electromechanical machines having ability to perform tasks or actions on some given electronic programming. While Omni directional mobile robots have been popularly used in several applications since they can respond more quickly and it would be capable of more sophistication. A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. This work proposes to design and create a model of a three-Wheeled Omnidirectional manipulator robot that can move faster and transport materials and placed on a processing machine by combine the two type of robots. Using an electrical, mechanical and power supply model controlled by PID control and serial communication between two microcontrollers.Os robôs são máquinas electromecânicas com capacidade para executar tarefas ou acções em alguma programação electrónica dada. O robôs móveis Omni direccionais têm sido popularmente empregados em várias aplicações porque podem responder mais rapidamente e seriam capazes de ser mais sofisticados. Também um braço robótico é um tipo de braço mecânico, geralmente programável, com funções semelhantes às de um braço humano; o braço pode ser a soma total do mecanismo ou pode fazer parte de um robô mais complexo. Este trabalho propõe-se conceber e criar um modelo de robô manipulador Omnidireccional de três rodas que pode mover-se mais rapidamente e transportar materiais e ser colocado numa máquina de processamento através da fusão dos dois tipos de robôs. Utilizando um modelo eléctrico, mecânico e de alimentação controlado por controlo PID e comunicação em série entre dois microcontroladores

    Development of an anthropomorphic mobile manipulator with human, machine and environment interaction

    Get PDF
    An anthropomorphic mobile manipulator robot (CHARMIE) is being developed by the University of Minho's Automation and Robotics Laboratory (LAR). The robot gathers sensorial information and processes using neural networks, actuating in real time. The robot's two arms allow object and machine interaction. Its anthropomorphic structure is advantageous since machines are designed and optimized for human interaction. Sound output allows it to relay information to workers and provide feedback. Allying these features with communication with a database or remote operator results in establishment of a bridge between the physical environment and virtual domain. The goal is an increase in information flow and accessibility. This paper presents the current state of the project, intended features and how it can contribute to the development of Industry 4.0. Focus is given to already finished work, detailing the methodology used for two of the robot's subsystems: locomotion system; lower limbs of the robot.- This project has been supported by the ALGORITMI Research Centre of University of Minho's School of Engineering
    corecore