99 research outputs found

    Weakly coupled heat bath models for Gibbs-like invariant states in nonlinear wave equations

    Get PDF
    We study the scaling scenery of Gibbs measures for subshifts of finite type on self-conformal fractals and applications to Falconer's distance set problem and dimensions of projections. Our analysis includes hyperbolic Julia sets, limit sets of Schottky groups and graph-directed self-similar sets.Comment: 17 pages, 1 figur

    Weakly coupled heat bath models for Gibbs-like invariant states in nonlinear wave equations

    Get PDF
    textabstractThermal bath coupling mechanisms as utilized in molecular dynamics are applied to partial differential equation models. Working from a semi-discrete (Fourier mode) formulation for the Burgers–Hopf or Korteweg–de Vries equation, we introduce auxiliary variables and stochastic perturbations in order to drive the system to sample a target ensemble which may be a Gibbs state or, more generally, any smooth distribution defined on a constraint manifold. We examine the ergodicity of approaches based on coupling of the heat bath to the high wave numbers, with the goal of controlling the ensemble through the fast modes. We also examine different thermostat methods in the extent to which dynamical properties are corrupted in order to accurately compute the average of a desired observable with respect to the invariant distribution. The principal observation of this paper is that convergence to the invariant distribution can be achieved by thermostatting just the highest wave number, while the evolution of the slowest modes is little affected by such a thermostat

    Recent Advances in Industrial and Applied Mathematics

    Get PDF
    This open access book contains review papers authored by thirteen plenary invited speakers to the 9th International Congress on Industrial and Applied Mathematics (Valencia, July 15-19, 2019). Written by top-level scientists recognized worldwide, the scientific contributions cover a wide range of cutting-edge topics of industrial and applied mathematics: mathematical modeling, industrial and environmental mathematics, mathematical biology and medicine, reduced-order modeling and cryptography. The book also includes an introductory chapter summarizing the main features of the congress. This is the first volume of a thematic series dedicated to research results presented at ICIAM 2019-Valencia Congress

    Adomian decomposition method, nonlinear equations and spectral solutions of burgers equation

    Get PDF
    Tese de doutoramento. Ciências da Engenharia. 2006. Faculdade de Engenharia. Universidade do Porto, Instituto Superior Técnico. Universidade Técnica de Lisbo

    Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators

    Get PDF
    International audienceAcoustic wave propagation in a one-dimensional waveguide connected with Helmholtz resonators is studied numerically. Finite amplitude waves and viscous boundary layers are considered. The model consists of two coupled evolution equations: a nonlinear PDE describing nonlinear acoustic waves, and a linear ODE describing the oscillations in the Helmholtz resonators. The thermal and viscous losses in the tube and in the necks of the resonators are modeled by fractional derivatives. A diffusive representation is followed: the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. A splitting method is then applied to the evolution equations: their propagative part is solved using a standard TVD scheme for hyperbolic equations, whereas their diffusive part is solved exactly. Various strategies are examined to compute the coefficients of the diffusive representation; finally, an optimization method is preferred to the usual quadrature rules. The numerical model is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, the existence of acoustic solitary waves is confirmed

    Recent Advances in Industrial and Applied Mathematics

    Get PDF
    This open access book contains review papers authored by thirteen plenary invited speakers to the 9th International Congress on Industrial and Applied Mathematics (Valencia, July 15-19, 2019). Written by top-level scientists recognized worldwide, the scientific contributions cover a wide range of cutting-edge topics of industrial and applied mathematics: mathematical modeling, industrial and environmental mathematics, mathematical biology and medicine, reduced-order modeling and cryptography. The book also includes an introductory chapter summarizing the main features of the congress. This is the first volume of a thematic series dedicated to research results presented at ICIAM 2019-Valencia Congress

    Numerical superposition of Gaussian beams over propagating domain for high frequency waves and high-order invariant-preserving methods for dispersive waves

    Get PDF
    This thesis is devoted to efficient numerical methods and their implementations for two classes of wave equations. The first class is linear wave equations in very high frequency regime, for which one has to use some asymptotic approach to address the computational challenges. We focus on the use of the Gaussian beam superposition to compute the semi--classical limit of the Schr {o}dinger equation. The second class is dispersive wave equations arising in modeling water waves. For the Whitham equation, so-called the Burgers--Poisson equation, we design, analyze, and implement local discontinuous Galerkin methods to compute the energy conservative solutions with high-order of accuracy. Our Gaussian beam (GB) approach is based on the domain-propagation GB superposition algorithm introduced by Liu and Ralston [Multiscale Model. Simul., 8(2), 2010, 622--644]. We construct an efficient numerical realization of the domain propagation-based Gaussian beam superposition for solving the Schr odinger equation. The method consists of several significant steps: a semi-Lagrangian tracking of the Hamiltonian trajectory using the level set representation, a fast search algorithm for the effective indices associated with the non-trivial grid points that contribute to the approximation, an accurate approximation of the delta function evaluated on the Hamiltonian manifold, as well as efficient computation of Gaussian beam components over the effective grid points. Numerical examples in one and two dimensions demonstrate the efficiency and accuracy of the proposed algorithms. For the Burgers--Poisson equation, we design, analyze and test a class of local discontinuous Galerkin methods. This model, proposed by Whitham [Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974] as a simplified model for shallow water waves, admits conservation of both momentum and energy as two invariants. The proposed numerical method is high order accurate and preserves two invariants, hence producing solutions with satisfying long time behavior. The L2L^2-stability of the scheme for general solutions is a consequence of the energy preserving property. The optimal order of accuracy for polynomial elements of even degree is proven. A series of numerical tests is provided to illustrate both accuracy and capability of the method

    Nonlinear wave propagation in disordered media

    Get PDF
    We briefly review the state-of-the-art of research on nonlinear wave propagation in disordered media. The paper is intended to provide the non-specialist reader with a flavor of this active field of physics. Firstly, a general introduction to the subject is made. We describe the basic models and the ways to study disorder in connection with them. Secondly, analytical and numerical techniques suitable for this purpose are outlined. We summarize their features and comment on their respective advantages, drawbacks and applicability conditions. Thirdly, the Nonlinear Klein-Gordon and Schrbdinger equations are chosen as specific examples. We collect a number of results that are representative of the phenomena arising from the competition between nonlinearity and disorder. The review is concluded with some remarks on open questions, main current trends and possible further developments.This work has been supported in part by the C.I.C. y T. (Spain) under project MAT90-0S44. A S. was also supported by fellowships from the Universidad Complutense and the Ministerio de Educacion y Ciencia.Publicad
    • …
    corecore