92 research outputs found

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Memristive Cluster Based Compact High-Density Nonvolatile Memory Design and Application for Image Storage

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)As a new type of nonvolatile device, the memristor has become one of the most promising technologies for designing a new generation of high-density memory. In this paper, a 4-bit high-density nonvolatile memory based on a memristor is designed and applied to image storage. Firstly, a memristor cluster structure consisting of a transistor and four memristors is designed. Furthermore, the memristor cluster is used as a memory cell in the crossbar array structure to realize the memory design. In addition, when the designed non-volatile memory is applied to gray scale image storage, only two memory cells are needed for the storage of one pixel. Through the Pspice circuit simulation, the results show that compared with the state-of-the-art technology, the memory designed in this paper has better storage density and read–write speed. When it is applied to image storage, it achieves the effect of no distortion and fast storage.Peer reviewe

    Modified projective synchronization of fractional-order hyperchaotic memristor-based Chua’s circuit

    Get PDF
    This paper investigates the modified projective synchronization (MPS) between two hyperchaotic memristor-based Chua circuits modeled by two nonlinear integer-order and fractional-order systems. First, a hyperchaotic memristor-based Chua circuit is suggested, and its dynamics are explored using different tools, including stability theory, phase portraits, Lyapunov exponents, and bifurcation diagrams. Another interesting property of this circuit was the coexistence of attractors and the appearance of mixed-mode oscillations. It has been shown that one can achieve MPS with integer-order and incommensurate fractional-order memristor-based Chua circuits. Finally, examples of numerical simulation are presented, showing that the theoretical results are in good agreement with the numerical ones

    Neural Bursting and Synchronization Emulated by Neural Networks and Circuits

    Get PDF
    © 2021 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TCSI.2021.3081150Nowadays, research, modeling, simulation and realization of brain-like systems to reproduce brain behaviors have become urgent requirements. In this paper, neural bursting and synchronization are imitated by modeling two neural network models based on the Hopfield neural network (HNN). The first neural network model consists of four neurons, which correspond to realizing neural bursting firings. Theoretical analysis and numerical simulation show that the simple neural network can generate abundant bursting dynamics including multiple periodic bursting firings with different spikes per burst, multiple coexisting bursting firings, as well as multiple chaotic bursting firings with different amplitudes. The second neural network model simulates neural synchronization using a coupling neural network composed of two above small neural networks. The synchronization dynamics of the coupling neural network is theoretically proved based on the Lyapunov stability theory. Extensive simulation results show that the coupling neural network can produce different types of synchronous behaviors dependent on synaptic coupling strength, such as anti-phase bursting synchronization, anti-phase spiking synchronization, and complete bursting synchronization. Finally, two neural network circuits are designed and implemented to show the effectiveness and potential of the constructed neural networks.Peer reviewe

    A Memristive Hyperchaotic System without Equilibrium

    Get PDF
    • …
    corecore