1,925 research outputs found

    A cutting-plane approach to the edge-weighted maximal clique problem

    Get PDF
    We investigated the computational performance of a cutting-plane algorithm for the problem of determining a maximal subclique in an edge-weighted complete graph. Our numerical results are contrasted with reports on closely related problems for which cutting-plane approaches perform well in instances of moderate size. Somewhat surprisingly, we find that our approach already in the case of n = 15 or N = 25 nodes in the underlying graph typically neither produces an integral solution nor yields a good approximation to the true optimal objective function value. This result seems to shed some doubt on the universal applicability of cuttingplane approaches as an efficient means to solve linear (0, 1)-programming problems of moderate size

    Restricted Dynamic Programming Heuristic for Precedence Constrained Bottleneck Generalized TSP

    Full text link
    We develop a restricted dynamical programming heuristic for a complicated traveling salesman problem: a) cities are grouped into clusters, resp. Generalized TSP; b) precedence constraints are imposed on the order of visiting the clusters, resp. Precedence Constrained TSP; c) the costs of moving to the next cluster and doing the required job inside one are aggregated in a minimax manner, resp. Bottleneck TSP; d) all the costs may depend on the sequence of previously visited clusters, resp. Sequence-Dependent TSP or Time Dependent TSP. Such multiplicity of constraints complicates the use of mixed integer-linear programming, while dynamic programming (DP) benefits from them; the latter may be supplemented with a branch-and-bound strategy, which necessitates a “DP-compliant” heuristic. The proposed heuristic always yields a feasible solution, which is not always the case with heuristics, and its precision may be tuned until it becomes the exact DP
    corecore