6,384 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Кибербезопасность в образовательных сетях

    Get PDF
    The paper discusses the possible impact of digital space on a human, as well as human-related directions in cyber-security analysis in the education: levels of cyber-security, social engineering role in cyber-security of education, “cognitive vaccination”. “A Human” is considered in general meaning, mainly as a learner. The analysis is provided on the basis of experience of hybrid war in Ukraine that have demonstrated the change of the target of military operations from military personnel and critical infrastructure to a human in general. Young people are the vulnerable group that can be the main goal of cognitive operations in long-term perspective, and they are the weakest link of the System.У статті обговорюється можливий вплив цифрового простору на людину, а також пов'язані з людиною напрямки кібербезпеки в освіті: рівні кібербезпеки, роль соціального інжинірингу в кібербезпеці освіти, «когнітивна вакцинація». «Людина» розглядається в загальному значенні, головним чином як та, що навчається. Аналіз надається на основі досвіду гібридної війни в Україні, яка продемонструвала зміну цілей військових операцій з військовослужбовців та критичної інфраструктури на людину загалом. Молодь - це вразлива група, яка може бути основною метою таких операцій в довгостроковій перспективі, і вони є найслабшою ланкою системи.В документе обсуждается возможное влияние цифрового пространства на человека, а также связанные с ним направления в анализе кибербезопасности в образовании: уровни кибербезопасности, роль социальной инженерии в кибербезопасности образования, «когнитивная вакцинация». «Человек» рассматривается в общем смысле, в основном как ученик. Анализ представлен на основе опыта гибридной войны в Украине, которая продемонстрировала изменение цели военных действий с военного персонала и критической инфраструктуры на человека в целом. Молодые люди являются уязвимой группой, которая может быть главной целью когнитивных операций в долгосрочной перспективе, и они являются самым слабым звеном Систем

    Job Match: Together for Good Business - Accommodating Individuals with Special Needs in the Workplace

    Get PDF
    The purpose of this module is to explain the systematic process needed to successfully employ people with special needs (individuals with disabilities and older individuals). This process may seem most useful to job developers and job coaches whose primary role is vocational training and job development. However, much of the material, particularly the chapters on job analysis (3), job matching (4), and adaptations (5) will be equally useful to employers. This training kit provides information that allows businesses, industries, and employing agencies to work cooperatively to design training and employment programs that meet the needs of individuals with special needs, employers, and rehabilitation personnel

    Strategic principles and capacity building for a whole-of-systems approaches to physical activity

    Get PDF

    Leveling the Playing Field: Attracting, Engaging, and Advancing People with Disabilities

    Get PDF
    People with disabilities experience significant challenges in finding employment. The participation of people with disabilities in the workforce and their median income are both less than half that of the civilian workforce. They work part time 68 percent more frequently than people without disabilities. These disheartening results persist despite the enactment of significant federal legislation aimed at making the workplace more supportive and accessible to people with disabilities. The Conference Board Research Working Group (RWG) on Improving Employment Outcomes for People with Disabilities was convened to address how to overcome these disparities. It was sponsored by the Employment and Disability Institute at Cornell University, under a grant from the National Institute on Disability and Rehabilitation Research of the U.S. Department of Education. The RWG members focused on four questions: 1) The business case: Is it advantageous for organizations to employ people with disabilities? 2) Organizational readiness: What should organizations do to create a workplace that enables people with disabilities to thrive and advance? 3) Measurement: How can success for both people with disabilities and the organization itself be determined? 4) Self-disclosure: How can people with disabilities, especially those whose disabilities are not obvious, be encouraged to identify themselves so that resources can be directed toward them and outcomes can be measured

    Evolving Beyond Reasonable Accommodations Towards Off-Shelf Accessible Workplaces and Campuses

    Get PDF
    One of the hallmarks of the Americans with Disabilities Act (“ADA”), which prohibits discrimination in the workplace on the basis of disability, is that it defines “discrimination” to include “not making reasonable accommodations to the known mental or physical limitations of an otherwise qualified individual with a disability.” This concept of reasonable accommodation was seen as innovative in two ways. It recognized that employers must sometimes take affirmative steps or make adaptations to afford individuals with disabilities an equal opportunity to apply for and perform jobs. And it identified the failure to take such affirmative steps as a type of discrimination that would be just as actionable under the statute as a refusal to hire or other adverse employment action taken because of a person’s disability. In contrast to the first generation of civil rights laws that simply prohibited unequal treatment based on race, national origin, sex, and age, the ADA recognized that a one-size-fits-all approach does not always yield fair outcomes and that sometimes equity requires treating differently situated people differently. However, this Article argues that the reasonable accommodations framework, which has transcended employment to dominate nearly every context in which people with disabilities interact with society (including K12 and post-secondary education), has had unintended, harmful consequences. Further, this Article argues that those consequences have hindered the ADA’s goals of integrating people with disabilities “into the economic and social mainstream of American life.” By requiring that employers and educational institutions consider the accessibility of their work and learning environments only when a person with a disability arrives on the scene, the legal framework of reasonable accommodations reinforces the notion that inaccessible spaces, products, and ways of doing things are the default, to be altered if and only if a “special” person comes along who requires that something be done differently. Unfortunately, this after-the-fact approach to accessibility all too often stigmatizes workers and students with disabilities, has created unhelpful incentives and has led to far more litigation about the reasonableness of particular accommodations than actual progress in reducing the staggeringly high unemployment rate among people with disabilities. This Article calls for moving beyond the reasonable accommodations framework while not dispensing with it entirely. Part I traces the concept of reasonable accommodations from its origin in the Rehabilitation Act to the Fair Housing Amendments Act to the ADA. Part I will also describe how this concept has come to permeate other areas of law affecting individuals with disabilities. Part II discusses alternative approaches such as universal design and inclusive design that consider how to build accessibility into products and the environment from the beginning and will profile a few successful examples of such “off-the-shelf accessibility.” Part III describes the advantages of “off-the-shelf accessibility” over reasonable accommodations from the perspective of individuals with disabilities in schools and the workforce, from the perspective of employers and educational institutions, and from the perspective of society as a whole. Finally, Part IV offers recommendations for how employers and schools can move from a purely accommodations-based paradigm to embracing more “off-the-shelf accessibility” and suggests law reforms and policy proposals to facilitate and accelerate that shift

    Workforce challenges: 'inclusive design' for organizational sustainability

    Get PDF
    Today's challenge for workforce management lies in providing a healthy, safe and productive working culture where people are valued, empowered and respected. Workforce diversity is becoming an essential aspect of the global workforce, and ageing is the most prominent and significant factor in this regard. Diversity brings many opportunities and challenges, as workers with different backgrounds, cultures, working attitudes, behaviours and age work together, and in future, the key to organizational effectiveness and sustainability will heavily depend on developing and sustaining inclusive work environments where people with their differences can co-exist safely and productively. Manufacturing organizations expect the highest levels of productivity and quality, but unfortunately the manufacturing system design process does not take into account human variability issues caused by age, skill, experience, attitude towards work etc. This thesis focuses on proposing an inclusive design methodology to address the design needs of a broader range of the population. However, the promotion and implementation of an inclusive design method is challenging due to the lack of relevant data and lack of relevant tools and methods to help designers. This research aims to support the inclusive design process by providing relevant data and developing new design methodologies. The inclusive design methodology suggested in this thesis is a three step approach for achieving a safe and sustainable work environment for workers, with special concern for older workers. The methodology is based on the provision of relevant human capabilities data, the capture and analysis of difference in human behaviour and the use of this knowledge in a digital human modelling tool. The research is focused on manual assembly through a case study in the furniture manufacturing industry and joint mobility data from a wide-ranging population has been analysed and the task performing strategies and behaviours of workers with different levels of skills have been recorded and analysed. It has been shown that joint mobility significantly decreases with age and disability and that skilful workers are likely to adopt safer and more productive working strategies. A digital human modelling based inclusive design strategy was found to be useful in addressing the design needs of older workers performing manufacturing assembly activities. This strategy validates the concept of using human capabilities data for assessing the level of acceptability of any adopted strategy for older workers, and suggests that the strategies adopted by skilful workers are more likely to be equally acceptable for older and younger workers keeping in view differences in their joint mobility. The overall purpose of this thesis is to present a road map towards the promotion and implementation of the inclusive design method for addressing workforce challenges and in future the same strategies might be implemented within a variety of other industrial applications. The proposed three step inclusive design methodology and getting a reasonable understanding of human variability issues along with the use of human capabilities data (joint mobility in this case) in a human modelling system for design assessment at a pre-design stage can be considered as the major contributions of this research

    Intelligent Mobile Learning Interaction System (IMLIS): A Personalized Learning System for People with Mental Disabilities

    Get PDF
    The domain of learning context for people with special needs is a big challenge for digi- tal media in education. This thesis describes the main ideas and the architecture of a system called Intelligent Mobile Learning Interaction System (IMLIS) that provides a mobile learning environment for people with mental disabilities. The design of IMLIS aims to enhance personalization aspects by using a decision engine, which makes deci- sions based on the user s abilities, learning history and reactions to processes. It allows for adaptation, adjustment and personalization of content, learning activities, and the user interface on different levels in a context where learners and teachers are targeting autonomous learning by personalized lessons and feedback. Due to IMLIS dynamic structure and flexible patterns, it is able to meet the specific needs of individuals and to engage them in learning activities with new learning motivations. In addition to support- ing learning material and educational aspects, mobile learning fosters learning across context and provides more social communication and collaboration for its users. The suggested methodology defines a comprehensive learning process for the mentally disabled to support them in formal and informal learning. We apply knowledge from the field of research and practice to people with mental disabilities, as well as discuss the pedagogical and didactical aspects of the design

    Workload-aware systems and interfaces for cognitive augmentation

    Get PDF
    In today's society, our cognition is constantly influenced by information intake, attention switching, and task interruptions. This increases the difficulty of a given task, adding to the existing workload and leading to compromised cognitive performances. The human body expresses the use of cognitive resources through physiological responses when confronted with a plethora of cognitive workload. This temporarily mobilizes additional resources to deal with the workload at the cost of accelerated mental exhaustion. We predict that recent developments in physiological sensing will increasingly create user interfaces that are aware of the user’s cognitive capacities, hence able to intervene when high or low states of cognitive workload are detected. In this thesis, we initially focus on determining opportune moments for cognitive assistance. Subsequently, we investigate suitable feedback modalities in a user-centric design process which are desirable for cognitive assistance. We present design requirements for how cognitive augmentation can be achieved using interfaces that sense cognitive workload. We then investigate different physiological sensing modalities to enable suitable real-time assessments of cognitive workload. We provide empirical evidence that the human brain is sensitive to fluctuations in cognitive resting states, hence making cognitive effort measurable. Firstly, we show that electroencephalography is a reliable modality to assess the mental workload generated during the user interface operation. Secondly, we use eye tracking to evaluate changes in eye movements and pupil dilation to quantify different workload states. The combination of machine learning and physiological sensing resulted in suitable real-time assessments of cognitive workload. The use of physiological sensing enables us to derive when cognitive augmentation is suitable. Based on our inquiries, we present applications that regulate cognitive workload in home and work settings. We deployed an assistive system in a field study to investigate the validity of our derived design requirements. Finding that workload is mitigated, we investigated how cognitive workload can be visualized to the user. We present an implementation of a biofeedback visualization that helps to improve the understanding of brain activity. A final study shows how cognitive workload measurements can be used to predict the efficiency of information intake through reading interfaces. Here, we conclude with use cases and applications which benefit from cognitive augmentation. This thesis investigates how assistive systems can be designed to implicitly sense and utilize cognitive workload for input and output. To do so, we measure cognitive workload in real-time by collecting behavioral and physiological data from users and analyze this data to support users through assistive systems that adapt their interface according to the currently measured workload. Our overall goal is to extend new and existing context-aware applications by the factor cognitive workload. We envision Workload-Aware Systems and Workload-Aware Interfaces as an extension in the context-aware paradigm. To this end, we conducted eight research inquiries during this thesis to investigate how to design and create workload-aware systems. Finally, we present our vision of future workload-aware systems and workload-aware interfaces. Due to the scarce availability of open physiological data sets, reference implementations, and methods, previous context-aware systems were limited in their ability to utilize cognitive workload for user interaction. Together with the collected data sets, we expect this thesis to pave the way for methodical and technical tools that integrate workload-awareness as a factor for context-aware systems.Tagtäglich werden unsere kognitiven Fähigkeiten durch die Verarbeitung von unzähligen Informationen in Anspruch genommen. Dies kann die Schwierigkeit einer Aufgabe durch mehr oder weniger Arbeitslast beeinflussen. Der menschliche Körper drückt die Nutzung kognitiver Ressourcen durch physiologische Reaktionen aus, wenn dieser mit kognitiver Arbeitsbelastung konfrontiert oder überfordert wird. Dadurch werden weitere Ressourcen mobilisiert, um die Arbeitsbelastung vorübergehend zu bewältigen. Wir prognostizieren, dass die derzeitige Entwicklung physiologischer Messverfahren kognitive Leistungsmessungen stets möglich machen wird, um die kognitive Arbeitslast des Nutzers jederzeit zu messen. Diese sind in der Lage, einzugreifen wenn eine zu hohe oder zu niedrige kognitive Belastung erkannt wird. Wir konzentrieren uns zunächst auf die Erkennung passender Momente für kognitive Unterstützung welche sich der gegenwärtigen kognitiven Arbeitslast bewusst sind. Anschließend untersuchen wir in einem nutzerzentrierten Designprozess geeignete Feedbackmechanismen, die zur kognitiven Assistenz beitragen. Wir präsentieren Designanforderungen, welche zeigen wie Schnittstellen eine kognitive Augmentierung durch die Messung kognitiver Arbeitslast erreichen können. Anschließend untersuchen wir verschiedene physiologische Messmodalitäten, welche Bewertungen der kognitiven Arbeitsbelastung in Realzeit ermöglichen. Zunächst validieren wir empirisch, dass das menschliche Gehirn auf kognitive Arbeitslast reagiert. Es zeigt sich, dass die Ableitung der kognitiven Arbeitsbelastung über Elektroenzephalographie eine geeignete Methode ist, um den kognitiven Anspruch neuartiger Assistenzsysteme zu evaluieren. Anschließend verwenden wir Eye-Tracking, um Veränderungen in den Augenbewegungen und dem Durchmesser der Pupille unter verschiedenen Intensitäten kognitiver Arbeitslast zu bewerten. Das Anwenden von maschinellem Lernen führt zu zuverlässigen Echtzeit-Bewertungen kognitiver Arbeitsbelastung. Auf der Grundlage der bisherigen Forschungsarbeiten stellen wir Anwendungen vor, welche die Kognition im häuslichen und beruflichen Umfeld unterstützen. Die physiologischen Messungen stellen fest, wann eine kognitive Augmentierung sich als günstig erweist. In einer Feldstudie setzen wir ein Assistenzsystem ein, um die erhobenen Designanforderungen zur Reduktion kognitiver Arbeitslast zu validieren. Unsere Ergebnisse zeigen, dass die Arbeitsbelastung durch den Einsatz von Assistenzsystemen reduziert wird. Im Anschluss untersuchen wir, wie kognitive Arbeitsbelastung visualisiert werden kann. Wir stellen eine Implementierung einer Biofeedback-Visualisierung vor, die das Nutzerverständnis zum Verlauf und zur Entstehung von kognitiver Arbeitslast unterstützt. Eine abschließende Studie zeigt, wie Messungen kognitiver Arbeitslast zur Vorhersage der aktuellen Leseeffizienz benutzt werden können. Wir schließen hierbei mit einer Reihe von Applikationen ab, welche sich kognitive Arbeitslast als Eingabe zunutze machen. Die vorliegende wissenschaftliche Arbeit befasst sich mit dem Design von Assistenzsystemen, welche die kognitive Arbeitslast der Nutzer implizit erfasst und diese bei der Durchführung alltäglicher Aufgaben unterstützt. Dabei werden physiologische Daten erfasst, um Rückschlüsse in Realzeit auf die derzeitige kognitive Arbeitsbelastung zu erlauben. Anschließend werden diese Daten analysiert, um dem Nutzer strategisch zu assistieren. Das Ziel dieser Arbeit ist die Erweiterung neuartiger und bestehender kontextbewusster Benutzerschnittstellen um den Faktor kognitive Arbeitslast. Daher werden in dieser Arbeit arbeitslastbewusste Systeme und arbeitslastbewusste Benutzerschnittstellen als eine zusätzliche Dimension innerhalb des Paradigmas kontextbewusster Systeme präsentiert. Wir stellen acht Forschungsstudien vor, um die Designanforderungen und die Implementierung von kognitiv arbeitslastbewussten Systemen zu untersuchen. Schließlich stellen wir unsere Vision von zukünftigen kognitiven arbeitslastbewussten Systemen und Benutzerschnittstellen vor. Durch die knappe Verfügbarkeit öffentlich zugänglicher Datensätze, Referenzimplementierungen, und Methoden, waren Kontextbewusste Systeme in der Auswertung kognitiver Arbeitslast bezüglich der Nutzerinteraktion limitiert. Ergänzt durch die in dieser Arbeit gesammelten Datensätze erwarten wir, dass diese Arbeit den Weg für methodische und technische Werkzeuge ebnet, welche kognitive Arbeitslast als Faktor in das Kontextbewusstsein von Computersystemen integriert
    corecore