2,373 research outputs found

    A review of grid-tied converter topologies used in photovoltaic systems

    Get PDF
    This study provides review of grid-tied architectures used in photovoltaic power systems, classified by the granularity level at which maximum power point tracking (MPPT) is applied. Grid-tied PV power systems can be divided into two main groups, namely centralized MPPT (CMPPT) and distributed MPPT (DMPPT). The DMPPT systems are further classified according to the levels at which MPPT can be applied, i.e. string, module, submodule, and cell level. Typical topologies for each category are also introduced, explained and analyzed. The classification is intended to help readers understand the latest developments of grid-tied PV power systems and inform research directions

    A Comprehensive Review on Small Satellite Microgrids

    Get PDF

    Topology Derivation and Development of Non-Isolated Three-port Converters for DC Microgrids

    Get PDF
    Currently, three-port converters (TPCs) are gaining popularity in applications which integrate renewable energies, such as photovoltaics and wind, and energy storage elements, such as batteries and supercapacitors with load. This is due to the advantages of a single power conversion stage between any two ports for better conversion efficiency and a highly integrated structure for compactness. Most of the reported TPCs focus on the consuming load. However, there are applications such as hybrid-electric vehicle braking systems and DC microgrids which have power generating capability. A typical example is battery charging in a DC microgrid. When the photovoltaics has inadequate power to charge the battery, the TPCs that consider only consuming load need an extra DC/DC converter for the DC bus to charge the battery. Three-winding transformers associated with full-bridge configurations as the basis for TPCs can fulfill the purpose of bi-directional power flow between any two ports. However, bulkiness of transformers and the need for more switches and associated control mechanisms increases the converter complexity, volume and cost. Solutions for integrating a regenerative load in NITPCs are still limited. This research work focuses on the development of non-isolated three-port converters (NITPCs), as they are capable of driving a regenerative load while offering a compact solution. The study includes a systematic approach to deriving a family of NITPCs. They combine different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and overall voltage conversion ratio. The derived converter topologies allow for all possible power flow combinations among the sources and load while preserving the single power processing feature of the TPC. A design example of a boost converter based TPC with a bi-directional buck converter is reported. In addition, a novel single-inductor NITPC is proposed. It is a further integrated topology according to the aforementioned design example where only one inductor is required instead of two, and the number of power transistors remains the same. The detailed topological derivation, operation principles, steady-state analysis, simulation results and experiment results are given to verify the proposed NITPCs

    Development of Multiport Single Stage Bidirectional Converter for Photovoltaic and Energy Storage Integration

    Get PDF
    The energy market is on the verge of a paradigm shift as the emergence of renewable energy sources over traditional fossil fuel based energy supply has started to become cost competitive and viable. Unfortunately, most of the attractive renewable sources come with inherent challenges such as: intermittency and unreliability. This is problematic for today\u27s stable, day ahead market based power system. Fortunately, it is well established that energy storage devices can compensate for renewable sources shortcomings. This makes the integration of energy storage with the renewable energy sources, one of the biggest challenges of modern distributed generation solution. This work discusses, the current state of the art of power conversion systems that integrate photovoltaic and battery energy storage systems. It is established that the control of bidirectional power flow to the energy storage device can be improved by optimizing its modulation and control. Traditional multistage conversion systems offers the required power delivery options, but suffers from a rigid power management system, reduced efficiency and increased cost. To solve this problem, a novel three port converter was developed which allows bidirectional power flow between the battery and the load, and unidirectional power flow from the photovoltaic port. The individual two-port portions of the three port converter were optimized in terms of modulation scheme. This leads to optimization of the proposed converter, for all possible power flow modes. In the second stage of the project, the three port converter was improved both in terms of cost and efficiency by proposing an improved topology. The improved three port converter has reduced functionality but is a perfect fit for the targeted microinverter application. The overall control system was designed to achieve improved reference tracking for power management and output AC voltage control. The bidirectional converter and both the proposed three port converters were analyzed theoretically. Finally, experimental prototypes were built to verify their performance

    Hourly Dispatching Wind-Solar Hybrid Power System with Battery-Supercapacitor Hybrid Energy Storage

    Get PDF
    This dissertation demonstrates a dispatching scheme of wind-solar hybrid power system (WSHPS) for a specific dispatching horizon for an entire day utilizing a hybrid energy storage system (HESS) configured by batteries and supercapacitors. Here, wind speed and solar irradiance are predicted one hour ahead of time using a multilayer perceptron Artificial Neural Network (ANN), which exhibits satisfactory performance with good convergence mapping between input and target output data. Furthermore, multiple state of charge (SOC) controllers as a function of energy storage system (ESS) SOC are developed to accurately estimate the grid reference power (PGrid,ref) for each dispatching period. A low pass filter (LPF) is employed to decouple the power between a battery and a supercapacitor (SC), and the cost optimization of the HESS is computed based on the time constant of the LPF through extensive simulations. Besides, the optimum value of depth of discharge for ESS considering both cycling and calendar expenses has been investigated to optimize the life cycle cost of the ESS, which is vital for minimizing the cost of a dispatchable wind-solar power scheme. Finally, the proposed ESS control algorithm is verified by conducting control hardware-in-the loop (CHIL) experiments in a real-time digital simulator (RTDS) platform

    Vanadium redox flow batteries: Potentials and challenges of an emerging storage technology

    Get PDF
    open4noIn this paper an overview of Vanadium Redox Flow Battery technologies, architectures, applications and power electronic interfaces is given. These systems show promising features for energy storage in smart grid applications, where the intermittent power produced by renewable sources must meet strict load requests and economical opportunities. This paper reviews the vanadium-based technology for redox flow batteries and highlights its strengths and weaknesses, outlining the research lines that aim at taking it to full commercial success.openSpagnuolo, Giovanni, Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni;Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni; Spagnuolo, Giovann

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF

    Hardware Approach To Mitigate The Effects Of Module Mismatch In A Grid-Connected Photovoltaic System: A Review

    Get PDF
    This study reviews the hardware approach to mitigate the effects of module mismatch in a grid-connected photovoltaic (PV) system. Unlike software solutions, i.e. the maximum power tracking algorithm, hardware techniques are well suited to enhance energy yield because of their inherent ability to extract energy from the mismatched module. Despite the extra cost of the additional circuitry, hardware techniques have recently gained popularity because of their long-term financial benefits. Notwithstanding the growing interest in this topic, review papers that provide updates on the technological developments of the three main hardware solutions, namely micro inverter,DC power optimizer, and energy recovery circuits, are lacking. This is in contrast to software solutions, which have had a considerable number of reputable reviews. Thus, a comprehensive review paper is appropriate at this juncture to provide up-to-date information on the latest topologies, highlight their merits/drawbacks, and evaluate their comparative performance

    Design and implementation of an improved power-electronic system for feeding loads of smart homes in remote areas using renewable energy sources

    Get PDF
    Abstract This paper suggests an improved step‐up step‐down DC‐DC system along with three‐input and four‐output for smart home applications. In this configuration, two unidirectional power ports have been identified as an Input power supply and one bidirectional power port for the power‐saving element, which can be used as a bidirectional converter for the hybrid vehicle to discharge in a dependent structure. This system can be used to combine renewable energy sources like photovoltaic (PV), fuel cell, battery and hybrid vehicle (HV) to prepare power for remote smart homes. By using this system, serving different loads with different voltage range from high voltage to ultra‐low voltage is possible, also battery charge and discharge with the energy‐saving method can be achieved. In this system, the condition of all possible low‐voltage load and high‐voltage load conditions has been assumed. In this structure, nine power switches have been used, in which all of these switches are in control with independent and dependent duty cycles. By using these cycles, maximum power can be earned from PV sources, bus‐bar voltage regulation, and battery power control is possible too. In this topology, depending on environmental conditions, five scenarios have been identified. To prove the capability of the system before the build, some valid simulations are needed. In this study, the suggested system has been simulated with power system computer aided design/electromagnetic transients including DC (PSCAD/EMTDC)
    • 

    corecore