69 research outputs found

    A novel 4 dimensional hyperchaotic system with its control, Synchronization and Implementation

    Get PDF
    This paper presents a new hyperchaotic system which shows some interesting features, the system is 4-dimensional with 4 nonlinearities. An extensive numerical analysis has showed that the system has some interesting features and strange behaviors. The numerical analysis includes studying the effect of system parameters and initial conditions. Some of the important properties of the system with parameter set, in which the system is hyperchaotic, such as Lyapunov exponents and Lyapunov dimension, dissipation and symmetry are found and discussed. In the next part of our work, a tracking controller for the proposed system is designed and then a synchronization control system for two identical systems is designed. The design procedure uses combination of a simple synergetic control with adaptive updating laws to identify the unknown parameters derived basing on Lyapunov theorem. Hardware implementation based on microcontroller unit (MCU) board is proposed and tested and used to experimentally validate the designed control and synchronization systems. As an application, the designed synchronization system is used as a secure analogue communication system. Using MATLAB, Simulation study for the control and synchronization systems is presented. The simulation and experimental study have been showed excellent results

    A new 4-D hyperchaotic hidden attractor system: Its dynamics, coexisting attractors, synchronization and microcontroller implementation

    Get PDF
    In this paper, a simple 4-dimensional hyperchaotic system is introduced. The proposed system has no equilibria points, so it admits hidden attractor which is an interesting feature of chaotic systems. Another interesting feature of the proposed system is the coexisting of attractors where it shows periodic and chaotic coexisting attractors. After introducing the system, the system is analyzed dynamically using numerical and theoretical techniques. In this analysis, Lyapunov exponents and bifurcation diagrams have been used to investigate chaotic and hyperchaotic nature, the ranges of system parameters for different behaviors and the route for chaos and coexisting attractors regions. In the next part of our work, a synchronization control system for two identical systems is designed. The design procedure uses a combination of simple synergetic control with adaptive updating laws to identify the unknown parameters derived basing on Lyapunov theorem. Microcontroller (MCU) based hardware implementation system is proposed and tested by using MATLAB as a display side. As an application, the designed synchronization system is used as a secure analog communication system. The designed MCU system with MATLAB Simulation is used to validate the designed synchronization and secure communication systems and excellent results have been obtained

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    Finite-Time Synchronization of the Rabinovich and Rabinovich-Fabrikant Chaotic Systems for Different Evolvable Parameters

    Get PDF
    This paper addresses the challenge of synchronizing the dynamics of two distinct 3D chaotic systems, specifically the Rabinovich and Rabinovich-Fabrikant systems, employing a finite-time synchronization approach. These chaotic systems exhibit diverse characteristics and evolving chaotic attractors, influenced by specific parameters and initial conditions. Our proposed low-cost finite-time synchronization method leverages the signum function's tracking properties to facilitate controlled coupling within a finite time frame. The design of finite-time control laws is rooted in Lyapunov stability criteria and lemmas. Numerical experiments conducted within the MATLAB simulation environment demonstrate the successful asymptotic synchronization of the master and slave systems within finite time. To assess the global robustness of our control scheme, we applied it across various system parameters and initial conditions. Remarkably, our results reveal consistent synchronization times and dynamics across these different scenarios. In summary, this study presents a finite-time synchronization solution for non-identical 3D chaotic systems, showcasing the potential for robust and reliable synchronization under varying conditions

    Hybrid Chaos Synchronization of 3-Cells Cellular Neural Network Attractors via Adaptive Control Method

    Get PDF
    Abstract: In this research work, we first discuss the properties of the 3-cells cellular neural network (CNN) attractor discovered b

    Hybrid Synchronization of the Generalized Lotka-Volterra Three-Species Biological Systems via Adaptive Control

    Get PDF
    Abstract: Since the recent research has shown the importance of biological control in many biological systems appearing in nature, this research paper investigates research in the dynamic and chaotic analysis of the generalized Lotka-Volterra three-species biological system, which was studied b

    Hyperchaotic technology-based efficient image encryption algorithm an overview.

    Get PDF
    Multimedia data encryption is so crucial because the multimedia encryption algorithm needs more time and memory, and it is difficult to implement. Because of this, the hyperchaotic image encryption technique is becoming more and more popular, which uses little memory, time, or energy and offers the highest level of security for low-powered devices. This study offers a comprehensive overview of modern hyperchaotic systems. By focusing on these complex systems' uniqueness and fundamental features, a study of their dynamic behavior is offered. Such systems are now being used more and more in a variety of industries, including finance, secure communication, and encryption, for example. In reality, every field calls for particular performances of unusual complexity. This research then suggests a specific classification based on the crucial hyperchaotic characteristic, Lyapunov exponent, the equilibrium points, dynamical behavior, NPCR, and UACI.
    • …
    corecore