47,230 research outputs found

    Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer: a novel mechanism for enhancing specific antigen presentation

    Get PDF
    The B cell antigen receptor (BCR) efficiently facilitates the capture and processing of a specific antigen for presentation on MHC class II molecules to antigen specific CD4+ T cells (1). Despite this, the majority of B cells are only thought to play a limited role in CD4+ T cell activation since BCRs are clonotypically expressed. Here we show, however, that activated B cells can, both in vitro and in vivo, rapidly donate their BCR to bystander B cells, a process that is mediated by direct membrane transfer between adjacent B cells and is amplified by the interaction of the BCR with specific antigen. This results in a dramatic expansion in the number of antigen-binding B cells in vivo, with the transferred BCR endowing recipient B cells with the ability to present specific antigen to antigen-specific CD4+ T cells

    Loss of AND-34/BCAR3 Expression in Mice Results in Rupture of the Adult Lens

    Get PDF
    PURPOSE. AND-34/BCAR3 (Breast Cancer Anti-Estrogen Resistance 3) associates with the focal adhesion adaptor protein, p130CAS/BCAR1. Expression of AND-34 regulates epithelial cell growth pattern, motility, and growth factor dependence. We sought to establish the effects of the loss of AND-34 expression in a mammalian organism. METHODS. AND-34−/− mice were generated by homologous recombination. Histopathology, in situ hybridization, and western blotting were performed on murine tissues. RESULTS. Western analyses confirmed total loss of expression in AND-34−/− splenic lymphocytes. Mice lacking AND-34 are fertile and have normal longevity. While AND-34 is widely expressed in wild type mice, histologic analysis of multiple organs in AND-34−/− mice is unremarkable and analyses of lymphocyte development show no overt changes. A small percentage of AND-34−/− mice show distinctive small white eye lesions resulting from the migration of ruptured cortical lens tissue into the anterior chamber. Following initial vacuolization and liquefaction of the lens cortex first observed at postnatal day three, posterior lens rupture occurs in all AND-34−/− mice, beginning as early as three weeks and seen in all mice at three months. Western blot analysis and in situ hybridization confirmed the presence of AND-34 RNA and protein in lens epithelial cells, particularly at the lens equator. Prior data link AND-34 expression to the activation of Akt signaling. While Akt Ser 473 phosphorylation was readily detectable in AND-34+/+ lens epithelial cells, it was markedly reduced in the AND-34−/− lens epithelium. Basal levels of p130Cas phosphorylation were higher in AND-34+/+ than in AND-34−/− lens epithelium. CONCLUSIONS. These results demonstrate the loss of AND-34 dysregulates focal adhesion complex signaling in lens epithelial cells and suggest that AND-34-mediated signaling is required for maintenance of the structural integrity of the adult ocular lens.National Institutes of Health (RO1 CA114094); Logica Foundatio

    The Inositol- 1,4,5=Trisphosphate System Is Involved in Rapid Effects of Aldosterone in Human Mononuclear Leukocytes

    Get PDF
    There is increasing evidence for rapid steroid action on electrolyte transport in human mononuclear leukocytes (HML). In HML, aldosterone stimulates the Na+/H+ antiporter within a few minutes. Because a variety of hormones and growth factors activate the Na+/H+ antiporter via protein kinase C and inositol phospholipids, a possible involvement of inositol-1,4,5-trisphosphate (IP3) in the rapid effects of aldosterone in HML was investigated. The stimulation of IP3 generation was started by the addition of aldosterone, concanavalin A, or other steroids. A significant increase in IP3 levels by aldosterone (1 nmol/L, P < 0.05) was found after 1 min, similar to that found after concanavalin A (25 micrograms/mL). Aldosterone caused a concentration-dependent elevation of IP3 levels, with an apparent EC50 of approximately 0.1 nmol/L. Fludrocortisone stimulated IP3 generation at similar concentrations, whereas a weaker IP3 stimulation by glucocorticoids (hydrocortisone, dexamethasone) occurred at micromolar concentrations only. Canrenone, a potent inhibitor of classical aldosterone action, was not effective up to a concentration of 100 nmol/L. These findings show kinetic and pharmacological similarities with both the functional data on Na+/H+ antiport stimulation by aldosterone and the studies of 125I-aldosterone binding to plasma membranes of HML. Thus, these data are the first to indicate an involvement of the phosphoinositide pathway in the rapid membrane effects of aldosterone

    A simple and sensitive flow cytometric assay for the determination of the cytotoxic activity of human natural killer cells

    Get PDF
    A new, simple and sensitive flow cytometric assay for the determination of the cytotoxic activity of human natural killer cells is described. The assay is based on the use of two fluorochromes. The target cell population is stained with one fluorochrome (octadecylamine-fluorescein isothiocyanate, F-18) prior to incubation with the effector cells. F-18 remains in the membrane of the target cells even when they are killed thereby permitting a clear separation between effector and target cells. Dead cells are determined by staining with a second fluorochrome (propidium iodide) after incubation of effector and target cells.\ud F-18 is not toxic and does not decrease the cytotoxic activity of human natural killer cells. It is also stable (exchange between labeled and non-labeled cells is negligible in a period of at least 4 h at 37°C) and it remains in the membrane of the killed cells. A clear distinction between unlabeled effector and labeled target cells is obtained, even after incubation of target and effector cells for 4 h at 37°C and using a high effector cell-target cell ratio (75:1). A good correlation with the 51Cr release assay was obtained.\ud A potential application of the flow cytometric cytotoxicity assay using whole blood instead of isolated lymphocytes is presented.\ud \u

    Non-genomic regulation of intermediate conductance potassium channels by aldosterone in human colonic crypt cells

    Get PDF
    BACKGROUND: Aldosterone has a rapid, non-genomic, inhibitory effect on macroscopic basolateral K+ conductance in the human colon, reducing its capacity for Cl− secretion. The molecular identity of the K+ channels constituting this aldosterone inhibitable K+ conductance is unclear. AIM: To characterise the K+ channel inhibited by aldosterone present in the basolateral membrane of human colonic crypt cells. METHODS: Crypts were isolated from biopsies of healthy sigmoid colon obtained during colonoscopy. The effect of aldosterone on basolateral K+ channels, and the possible involvement of Na+:H+ exchange, were studied by patch clamp techniques. Total RNA from isolated crypts was subjected to reverse transcriptase-polymerase chain reaction (RT-PCR) using primers specific to intermediate conductance K+ channels (KCNN4) previously identified in other human tissues. RESULTS: In cell attached patches, 1 nmol/l aldosterone significantly decreased the activity of intermediate conductance (27 pS) K+ channels by 31%, 53%, and 54% after 1, 5 and 10, minutes, respectively. Increasing aldosterone concentration to 10 nmol/l produced a further 56% decrease in channel activity after five minutes. Aldosterone 1–10 nmol/l had no effect on channel activity in the presence of 20 µmol/l ethylisopropylamiloride, an inhibitor of Na+:H+ exchange. RT-PCR identified KCNN4 mRNA, which is likely to encode the 27 pS K+ channel inhibited by aldosterone. CONCLUSION: Intermediate conductance K+ channels (KCNN4) present in the basolateral membranes of human colonic crypt cells are a target for the non-genomic inhibitory effect of aldosterone, which involves stimulation of Na+:H+ exchange, thereby reducing the capacity of the colon for Cl− secretion
    • …
    corecore