515 research outputs found

    Sensing, interpreting, and anticipating human social behaviour in the real world

    Get PDF
    Low-level nonverbal social signals like glances, utterances, facial expressions and body language are central to human communicative situations and have been shown to be connected to important high-level constructs, such as emotions, turn-taking, rapport, or leadership. A prerequisite for the creation of social machines that are able to support humans in e.g. education, psychotherapy, or human resources is the ability to automatically sense, interpret, and anticipate human nonverbal behaviour. While promising results have been shown in controlled settings, automatically analysing unconstrained situations, e.g. in daily-life settings, remains challenging. Furthermore, anticipation of nonverbal behaviour in social situations is still largely unexplored. The goal of this thesis is to move closer to the vision of social machines in the real world. It makes fundamental contributions along the three dimensions of sensing, interpreting and anticipating nonverbal behaviour in social interactions. First, robust recognition of low-level nonverbal behaviour lays the groundwork for all further analysis steps. Advancing human visual behaviour sensing is especially relevant as the current state of the art is still not satisfactory in many daily-life situations. While many social interactions take place in groups, current methods for unsupervised eye contact detection can only handle dyadic interactions. We propose a novel unsupervised method for multi-person eye contact detection by exploiting the connection between gaze and speaking turns. Furthermore, we make use of mobile device engagement to address the problem of calibration drift that occurs in daily-life usage of mobile eye trackers. Second, we improve the interpretation of social signals in terms of higher level social behaviours. In particular, we propose the first dataset and method for emotion recognition from bodily expressions of freely moving, unaugmented dyads. Furthermore, we are the first to study low rapport detection in group interactions, as well as investigating a cross-dataset evaluation setting for the emergent leadership detection task. Third, human visual behaviour is special because it functions as a social signal and also determines what a person is seeing at a given moment in time. Being able to anticipate human gaze opens up the possibility for machines to more seamlessly share attention with humans, or to intervene in a timely manner if humans are about to overlook important aspects of the environment. We are the first to propose methods for the anticipation of eye contact in dyadic conversations, as well as in the context of mobile device interactions during daily life, thereby paving the way for interfaces that are able to proactively intervene and support interacting humans.Blick, Gesichtsausdrücke, Körpersprache, oder Prosodie spielen als nonverbale Signale eine zentrale Rolle in menschlicher Kommunikation. Sie wurden durch vielzählige Studien mit wichtigen Konzepten wie Emotionen, Sprecherwechsel, Führung, oder der Qualität des Verhältnisses zwischen zwei Personen in Verbindung gebracht. Damit Menschen effektiv während ihres täglichen sozialen Lebens von Maschinen unterstützt werden können, sind automatische Methoden zur Erkennung, Interpretation, und Antizipation von nonverbalem Verhalten notwendig. Obwohl die bisherige Forschung in kontrollierten Studien zu ermutigenden Ergebnissen gekommen ist, bleibt die automatische Analyse nonverbalen Verhaltens in weniger kontrollierten Situationen eine Herausforderung. Darüber hinaus existieren kaum Untersuchungen zur Antizipation von nonverbalem Verhalten in sozialen Situationen. Das Ziel dieser Arbeit ist, die Vision vom automatischen Verstehen sozialer Situationen ein Stück weit mehr Realität werden zu lassen. Diese Arbeit liefert wichtige Beiträge zur autmatischen Erkennung menschlichen Blickverhaltens in alltäglichen Situationen. Obwohl viele soziale Interaktionen in Gruppen stattfinden, existieren unüberwachte Methoden zur Augenkontakterkennung bisher lediglich für dyadische Interaktionen. Wir stellen einen neuen Ansatz zur Augenkontakterkennung in Gruppen vor, welcher ohne manuelle Annotationen auskommt, indem er sich den statistischen Zusammenhang zwischen Blick- und Sprechverhalten zu Nutze macht. Tägliche Aktivitäten sind eine Herausforderung für Geräte zur mobile Augenbewegungsmessung, da Verschiebungen dieser Geräte zur Verschlechterung ihrer Kalibrierung führen können. In dieser Arbeit verwenden wir Nutzerverhalten an mobilen Endgeräten, um den Effekt solcher Verschiebungen zu korrigieren. Neben der Erkennung verbessert diese Arbeit auch die Interpretation sozialer Signale. Wir veröffentlichen den ersten Datensatz sowie die erste Methode zur Emotionserkennung in dyadischen Interaktionen ohne den Einsatz spezialisierter Ausrüstung. Außerdem stellen wir die erste Studie zur automatischen Erkennung mangelnder Verbundenheit in Gruppeninteraktionen vor, und führen die erste datensatzübergreifende Evaluierung zur Detektion von sich entwickelndem Führungsverhalten durch. Zum Abschluss der Arbeit präsentieren wir die ersten Ansätze zur Antizipation von Blickverhalten in sozialen Interaktionen. Blickverhalten hat die besondere Eigenschaft, dass es sowohl als soziales Signal als auch der Ausrichtung der visuellen Wahrnehmung dient. Somit eröffnet die Fähigkeit zur Antizipation von Blickverhalten Maschinen die Möglichkeit, sich sowohl nahtloser in soziale Interaktionen einzufügen, als auch Menschen zu warnen, wenn diese Gefahr laufen wichtige Aspekte der Umgebung zu übersehen. Wir präsentieren Methoden zur Antizipation von Blickverhalten im Kontext der Interaktion mit mobilen Endgeräten während täglicher Aktivitäten, als auch während dyadischer Interaktionen mittels Videotelefonie

    An investigation into gaze-based interaction techniques for people with motor impairments

    Get PDF
    The use of eye movements to interact with computers offers opportunities for people with impaired motor ability to overcome the difficulties they often face using hand-held input devices. Computer games have become a major form of entertainment, and also provide opportunities for social interaction in multi-player environments. Games are also being used increasingly in education to motivate and engage young people. It is important that young people with motor impairments are able to benefit from, and enjoy, them. This thesis describes a program of research conducted over a 20-year period starting in the early 1990's that has investigated interaction techniques based on gaze position intended for use by people with motor impairments. The work investigates how to make standard software applications accessible by gaze, so that no particular modification to the application is needed. The work divides into 3 phases. In the first phase, ways of using gaze to interact with the graphical user interfaces of office applications were investigated, designed around the limitations of gaze interaction. Of these, overcoming the inherent inaccuracies of pointing by gaze at on-screen targets was particularly important. In the second phase, the focus shifted from office applications towards immersive games and on-line virtual worlds. Different means of using gaze position and patterns of eye movements, or gaze gestures, to issue commands were studied. Most of the testing and evaluation studies in this, like the first, used participants without motor-impairments. The third phase of the work then studied the applicability of the research findings thus far to groups of people with motor impairments, and in particular,the means of adapting the interaction techniques to individual abilities. In summary, the research has shown that collections of specialised gaze-based interaction techniques can be built as an effective means of completing the tasks in specific types of games and how these can be adapted to the differing abilities of individuals with motor impairments

    Recognition, Analysis, and Assessments of Human Skills using Wearable Sensors

    Get PDF
    One of the biggest social issues in mature societies such as Europe and Japan is the aging population and declining birth rate. These societies have a serious problem with the retirement of the expert workers, doctors, and engineers etc. Especially in the sectors that require long time to make experts in fields like medicine and industry; the retirement and injuries of the experts, is a serious problem. The technology to support the training and assessment of skilled workers (like doctors, manufacturing workers) is strongly required for the society. Although there are some solutions for this problem, most of them are video-based which violates the privacy of the subjects. Furthermore, they are not easy to deploy due to the need for large training data. This thesis provides a novel framework to recognize, analyze, and assess human skills with minimum customization cost. The presented framework tackles this problem in two different domains, industrial setup and medical operations of catheter-based cardiovascular interventions (CBCVI). In particular, the contributions of this thesis are four-fold. First, it proposes an easy-to-deploy framework for human activity recognition based on zero-shot learning approach, which is based on learning basic actions and objects. The model recognizes unseen activities by combinations of basic actions learned in a preliminary way and involved objects. Therefore, it is completely configurable by the user and can be used to detect completely new activities. Second, a novel gaze-estimation model for attention driven object detection task is presented. The key features of the model are: (i) usage of the deformable convolutional layers to better incorporate spatial dependencies of different shapes of objects and backgrounds, (ii) formulation of the gaze-estimation problem in two different way, as a classification as well as a regression problem. We combine both formulations using a joint loss that incorporates both the cross-entropy as well as the mean-squared error in order to train our model. This enhanced the accuracy of the model from 6.8 by using only the cross-entropy loss to 6.4 for the joint loss. The third contribution of this thesis targets the area of quantification of quality of i actions using wearable sensor. To address the variety of scenarios, we have targeted two possibilities: a) both expert and novice data is available , b) only expert data is available, a quite common case in safety critical scenarios. Both of the developed methods from these scenarios are deep learning based. In the first one, we use autoencoders with OneClass SVM, and in the second one we use the Siamese Networks. These methods allow us to encode the expert’s expertise and to learn the differences between novice and expert workers. This enables quantification of the performance of the novice in comparison to the expert worker. The fourth contribution, explicitly targets medical practitioners and provides a methodology for novel gaze-based temporal spatial analysis of CBCVI data. The developed methodology allows continuous registration and analysis of gaze data for analysis of the visual X-ray image processing (XRIP) strategies of expert operators in live-cases scenarios and may assist in transferring experts’ reading skills to novices

    Mobile phone as VR gateway

    Get PDF

    The selective use of gaze in automatic speech recognition

    Get PDF
    The performance of automatic speech recognition (ASR) degrades significantly in natural environments compared to in laboratory assessments. Being a major source of interference, acoustic noise affects speech intelligibility during the ASR process. There are two main problems caused by the acoustic noise. The first is the speech signal contamination. The second is the speakers' vocal and non-vocal behavioural changes. These phenomena elicit mismatch between the ASR training and recognition conditions, which leads to considerable performance degradation. To improve noise-robustness, exploiting prior knowledge of the acoustic noise in speech enhancement, feature extraction and recognition models are popular approaches. An alternative approach presented in this thesis is to introduce eye gaze as an extra modality. Eye gaze behaviours have roles in interaction and contain information about cognition and visual attention; not all behaviours are relevant to speech. Therefore, gaze behaviours are used selectively to improve ASR performance. This is achieved by inference procedures using noise-dependant models of gaze behaviours and their temporal and semantic relationship with speech. `Selective gaze-contingent ASR' systems are proposed and evaluated on a corpus of eye movement and related speech in different clean, noisy environments. The best performing systems utilise both acoustic and language model adaptation
    • …
    corecore