13,731 research outputs found

    Shallow decision-making analysis in General Video Game Playing

    Full text link
    The General Video Game AI competitions have been the testing ground for several techniques for game playing, such as evolutionary computation techniques, tree search algorithms, hyper heuristic based or knowledge based algorithms. So far the metrics used to evaluate the performance of agents have been win ratio, game score and length of games. In this paper we provide a wider set of metrics and a comparison method for evaluating and comparing agents. The metrics and the comparison method give shallow introspection into the agent's decision making process and they can be applied to any agent regardless of its algorithmic nature. In this work, the metrics and the comparison method are used to measure the impact of the terms that compose a tree policy of an MCTS based agent, comparing with several baseline agents. The results clearly show how promising such general approach is and how it can be useful to understand the behaviour of an AI agent, in particular, how the comparison with baseline agents can help understanding the shape of the agent decision landscape. The presented metrics and comparison method represent a step toward to more descriptive ways of logging and analysing agent's behaviours

    Edge effects in game theoretic dynamics of spatially structured tumours

    Full text link
    Background: Analysing tumour architecture for metastatic potential usually focuses on phenotypic differences due to cellular morphology or specific genetic mutations, but often ignore the cell's position within the heterogeneous substructure. Similar disregard for local neighborhood structure is common in mathematical models. Methods: We view the dynamics of disease progression as an evolutionary game between cellular phenotypes. A typical assumption in this modeling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard local heterogeneities. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go vs. grow game. Results: We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary -- such as a blood-vessel, organ capsule, or basement membrane -- we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (EMT positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Interpretation: Pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. We expect our approach to extend to other evolutionary game models where interaction neighborhoods change at fixed system boundaries.Comment: 14 pages, 3 figures; restructured abstract, added histology to fig. 1, added fig. 3, discussion of EMT introduced and cancer biology expande

    Tools for Landscape Analysis of Optimisation Problems in Procedural Content Generation for Games

    Get PDF
    The term Procedural Content Generation (PCG) refers to the (semi-)automatic generation of game content by algorithmic means, and its methods are becoming increasingly popular in game-oriented research and industry. A special class of these methods, which is commonly known as search-based PCG, treats the given task as an optimisation problem. Such problems are predominantly tackled by evolutionary algorithms. We will demonstrate in this paper that obtaining more information about the defined optimisation problem can substantially improve our understanding of how to approach the generation of content. To do so, we present and discuss three efficient analysis tools, namely diagonal walks, the estimation of high-level properties, as well as problem similarity measures. We discuss the purpose of each of the considered methods in the context of PCG and provide guidelines for the interpretation of the results received. This way we aim to provide methods for the comparison of PCG approaches and eventually, increase the quality and practicality of generated content in industry.Comment: 30 pages, 8 figures, accepted for publication in Applied Soft Computin

    Dense urban typologies and the game of life: evolving cellular automata.

    Get PDF
    The ongoing rate of urbanization in China is the motivator behind this paper. As a response to the observed monotonous housing developments in Suzhou Industrial Park (SIP) and elsewhere, our method exploits Cellular Automata (CA) combined with fitness evaluation algorithms to explore speculatively the potential of existing developments and respective building regulations for increased density and diversity through an automated design algorithm. The well-known Game of Life CA is extended from its original two-dimensional functionality into the realm of three dimensions and enriched with the opportunity of resizing the involved cells according to their function. Moreover, our method integrates an earlier technique of constrcuctivists - namely the social condenser as a means of diversifying functional distribution within the Cellular Automata - as well as solar radiation as requested by the existing building regulation. The method achieves a densification of the development from 31% to 39% ratio of footprint to occupied volume whilst obeying the solar radiation rule and offering a more diverse functional occupation. This proof of concept demonstrates a solid approach to the automated design of housing developments at an urban scale with a limited evaluation procedure including solar radiation, which can be extended to other performance criteria in future work

    Analysing co-evolution among artificial 3D creatures

    Get PDF
    This paper is concerned with the analysis of coevolutionary dynamics among 3D artificial creatures, similar to those introduced by Sims (1). Coevolution is subject to complex dynamics which are notoriously difficult to analyse. We introduce an improved analysis method based on Master Tournament matrices [2], which we argue is both less costly to compute and more informative than the original method. Based on visible features of the resulting graphs, we can identify particular trends and incidents in the dynamics of coevolution and look for their causes. Finally, considering that coevolutionary progress is not necessarily identical to global overall progress, we extend this analysis by cross-validating individuals from different evolutionary runs, which we argue is more appropriate than single-record analysis method for evaluating the global performance of individuals

    Evolving recurrent neural network controllers by incremental fitness shaping

    Get PDF
    Time varying artificial neural networks are commonly used for dynamic problems such as games controllers and robotics as they give the controller a memory of what occurred in previous states which is important as actions in previous states can influence the final success of the agent. Because of this temporal dependence, methods such as back-propagation can be difficult to use to optimise network parameters and so genetic algorithms (GAs) are often used instead. While recurrent neural networks (RNNs) are a common network used with GAs, long short term memory (LSTM) networks have had less attention. Since, LSTM networks have a wide range of temporal dynamics, in this paper, we evolve an LSTM network as a controller for a lunar lander task with two evolutionary algorithms: a steady state GA (SSGA) and an evolutionary strategy (ES). Due to the presence of a large local optima in the fitness space, we implemented an incremental fitness scheme to both evolutionary algorithms. We also compare the behaviour and evolutionary progress of the LSTM with the behaviour of an RNN evolved via NEAT and ES with the same fitness function. LSTMs proved themselves to be evolvable on such tasks, though the SSGA solution was outperformed by the RNN. However, despite using an incremental scheme, the ES developed solutions far better than both showing that ES can be used both for incremental fitness and for LSTMs and RNNs on dynamic tasks

    Generating and Adapting to Diverse Ad-Hoc Cooperation Agents in Hanabi

    Full text link
    Hanabi is a cooperative game that brings the problem of modeling other players to the forefront. In this game, coordinated groups of players can leverage pre-established conventions to great effect, but playing in an ad-hoc setting requires agents to adapt to its partner's strategies with no previous coordination. Evaluating an agent in this setting requires a diverse population of potential partners, but so far, the behavioral diversity of agents has not been considered in a systematic way. This paper proposes Quality Diversity algorithms as a promising class of algorithms to generate diverse populations for this purpose, and generates a population of diverse Hanabi agents using MAP-Elites. We also postulate that agents can benefit from a diverse population during training and implement a simple "meta-strategy" for adapting to an agent's perceived behavioral niche. We show this meta-strategy can work better than generalist strategies even outside the population it was trained with if its partner's behavioral niche can be correctly inferred, but in practice a partner's behavior depends and interferes with the meta-agent's own behavior, suggesting an avenue for future research in characterizing another agent's behavior during gameplay.Comment: arXiv admin note: text overlap with arXiv:1907.0384

    Population Thinking and Evolutionary Economic Analysis: Exploring Marshall's Fable of the Trees

    Get PDF
    It is increasingly recognised that population thinking is a basic characteristic of evolutionary economics. By taking its starting point in what is here called Marshall's fable of the trees, the paper demonstrates that there are several forms of population thinking. The most basic form is intra-population thinking for single populations, and this thinking easily extends to structured populations, where selection takes place at several levels. But there is also a need of applying inter-population thinking to the co-evolution of populations and intra-to-inter population thinking to the emergence of new populations. To transform these forms of population thinking into evolutionary analyses, there is a need of simple analytical tools. The paper emphasises a simple and basic tool for population thinking 'Price' equation. This little known equation provides a surprisingly powerful tool for the partitioning of overall evolutionary change into a selection effect and what may be called an innovation effect. This partitioning serves as a means of accounting for evolution and as a starting point for the explanation of evolution. The applications of Price's equation cover relatively short-term evolutionary change within individual industries as well as the study of more complexly structured populations of firms. It also, to some extent, helps to understand the effects of co-evolution between populations and the emergence of new populations.Population thinking; Alfred Marshall; statistical analysis of economic evolution; Price'
    • 

    corecore