2,777 research outputs found

    A Testability Analysis Framework for Non-Functional Properties

    Full text link
    This paper presents background, the basic steps and an example for a testability analysis framework for non-functional properties

    Anytime coalition structure generation on synergy graphs

    No full text
    We consider the coalition structure generation (CSG) problem on synergy graphs, which arises in many practical applications where communication constraints, social or trust relationships must be taken into account when forming coalitions. We propose a novel representation of this problem based on the concept of edge contraction, and an innovative branch and bound approach (CFSS), which is particularly efficient when applied to a general class of characteristic functions. This new model provides a non-redundant partition of the search space, hence allowing an effective parallelisation. We evaluate CFSS on two benchmark functions, the edge sum with coordination cost and the collective energy purchasing functions, comparing its performance with the best algorithm for CSG on synergy graphs: DyCE. The latter approach is centralised and cannot be efficiently parallelised due to the exponential memory requirements in the number of agents, which limits its scalability (while CFSS memory requirements are only polynomial). Our results show that, when the graphs are very sparse, CFSS is 4 orders of magnitude faster than DyCE. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems (i.e., with more than 2700 agents

    Algorithms for Graph-Constrained Coalition Formation in the Real World

    Get PDF
    Coalition formation typically involves the coming together of multiple, heterogeneous, agents to achieve both their individual and collective goals. In this paper, we focus on a special case of coalition formation known as Graph-Constrained Coalition Formation (GCCF) whereby a network connecting the agents constrains the formation of coalitions. We focus on this type of problem given that in many real-world applications, agents may be connected by a communication network or only trust certain peers in their social network. We propose a novel representation of this problem based on the concept of edge contraction, which allows us to model the search space induced by the GCCF problem as a rooted tree. Then, we propose an anytime solution algorithm (CFSS), which is particularly efficient when applied to a general class of characteristic functions called m+am+a functions. Moreover, we show how CFSS can be efficiently parallelised to solve GCCF using a non-redundant partition of the search space. We benchmark CFSS on both synthetic and realistic scenarios, using a real-world dataset consisting of the energy consumption of a large number of households in the UK. Our results show that, in the best case, the serial version of CFSS is 4 orders of magnitude faster than the state of the art, while the parallel version is 9.44 times faster than the serial version on a 12-core machine. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems of agents (i.e., with more than 2700 agents).Comment: Accepted for publication, cite as "in press

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Comparing tagging suggestion models on discrete corpora

    Get PDF
    This paper aims to investigate the methods for the prediction of tags on a textual corpus that describes diverse data sets based on short messages; as an example, the authors demonstrate the usage of methods based on hotel staff inputs in a ticketing system as well as the publicly available StackOverflow corpus. The aim is to improve the tagging process and find the most suitable method for suggesting tags for a new text entry

    On the combination of argumentation solvers into parallel portfolios

    Get PDF
    In the light of the increasing interest in efficient algorithms for solving abstract argumentation problems and the pervasive availability of multicore machines, a natural research issue is to combine existing argumentation solvers into parallel portfolios. In this work, we introduce six methodologies for the automatic configuration of parallel portfolios of argumentation solvers for enumerating the preferred extensions of a given framework. In particular, four methodologies aim at combining solvers in static portfolios, while two methodologies are designed for the dynamic configuration of parallel portfolios. Our empirical results demonstrate that the configuration of parallel portfolios is a fruitful way for exploiting multicore machines, and that the presented approaches outperform the state of the art of parallel argumentation solvers

    Online Social Networks: Measurements, Analysis and Solutions for Mining Challenges

    Get PDF
    In the last decade, online social networks showed enormous growth. With the rise of these networks and the consequent availability of wealth social network data, Social Network Analysis (SNA) led researchers to get the opportunity to access, analyse and mine the social behaviour of millions of people, explore the way they communicate and exchange information. Despite the growing interest in analysing social networks, there are some challenges and implications accompanying the analysis and mining of these networks. For example, dealing with large-scale and evolving networks is not yet an easy task and still requires a new mining solution. In addition, finding communities within these networks is a challenging task and could open opportunities to see how people behave in groups on a large scale. Also, the challenge of validating and optimizing communities without knowing in advance the structure of the network due to the lack of ground truth is yet another challenging barrier for validating the meaningfulness of the resulting communities. In this thesis, we started by providing an overview of the necessary background and key concepts required in the area of social networks analysis. Our main focus is to provide solutions to tackle the key challenges in this area. For doing so, first, we introduce a predictive technique to help in the prediction of the execution time of the analysis tasks for evolving networks through employing predictive modeling techniques to the problem of evolving and large-scale networks. Second, we study the performance of existing community detection approaches to derive high quality community structure using a real email network through analysing the exchange of emails and exploring community dynamics. The aim is to study the community behavioral patterns and evaluate their quality within an actual network. Finally, we propose an ensemble technique for deriving communities using a rich internal enterprise real network in IBM that reflects real collaborations and communications between employees. The technique aims to improve the community detection process through the fusion of different algorithms
    corecore