2,184 research outputs found

    Fusion of facial regions using color information in a forensic scenario

    Full text link
    Comunicación presentada en: 18th Iberoamerican Congress on Pattern Recognition, CIARP 2013; Havana; Cuba; 20-23 November 2013The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41827-3_50This paper reports an analysis of the benefits of using color information on a region-based face recognition system. Three different color spaces are analysed (RGB, YCbCr, lαβ) in a very challenging scenario matching good quality mugshot images against video surveillance images. This scenario is of special interest for forensics, where examiners carry out a comparison of two face images using the global information of the faces, but paying special attention to each individual facial region (eyes, nose, mouth, etc.). This work analyses the discriminative power of 15 facial regions comparing both the grayscale and color information. Results show a significant improvement of performance when fusing several regions of the face compared to just using the whole face image. A further improvement of performance is achieved when color information is consideredThis work has been partially supported by contract with Spanish Guardia Civil and projects BBfor2 (FP7-ITN-238803), bio-Challenge (TEC2009-11186), Bio Shield (TEC2012-34881), Contexts (S2009/TIC-1485), TeraSense (CSD2008-00068) and "Cátedra UAM-Telefónica

    Identification using face regions: Application and assessment in forensic scenarios

    Full text link
    This is the author’s version of a work that was accepted for publication in Forensic Science International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Forensic Science International, 23, 1-3, (2013) DOI: 10.1016/j.forsciint.2013.08.020This paper reports an exhaustive analysis of the discriminative power of the different regions of the human face on various forensic scenarios. In practice, when forensic examiners compare two face images, they focus their attention not only on the overall similarity of the two faces. They carry out an exhaustive morphological comparison region by region (e.g., nose, mouth, eyebrows, etc.). In this scenario it is very important to know based on scientific methods to what extent each facial region can help in identifying a person. This knowledge obtained using quantitative and statical methods on given populations can then be used by the examiner to support or tune his observations. In order to generate such scientific knowledge useful for the expert, several methodologies are compared, such as manual and automatic facial landmarks extraction, different facial regions extractors, and various distances between the subject and the acquisition camera. Also, three scenarios of interest for forensics are considered comparing mugshot and Closed-Circuit TeleVision (CCTV) face images using MORPH and SCface databases. One of the findings is that depending of the acquisition distances, the discriminative power of the facial regions change, having in some cases better performance than the full face

    Persistent Homology Tools for Image Analysis

    Get PDF
    Topological Data Analysis (TDA) is a new field of mathematics emerged rapidly since the first decade of the century from various works of algebraic topology and geometry. The goal of TDA and its main tool of persistent homology (PH) is to provide topological insight into complex and high dimensional datasets. We take this premise onboard to get more topological insight from digital image analysis and quantify tiny low-level distortion that are undetectable except possibly by highly trained persons. Such image distortion could be caused intentionally (e.g. by morphing and steganography) or naturally in abnormal human tissue/organ scan images as a result of onset of cancer or other diseases. The main objective of this thesis is to design new image analysis tools based on persistent homological invariants representing simplicial complexes on sets of pixel landmarks over a sequence of distance resolutions. We first start by proposing innovative automatic techniques to select image pixel landmarks to build a variety of simplicial topologies from a single image. Effectiveness of each image landmark selection demonstrated by testing on different image tampering problems such as morphed face detection, steganalysis and breast tumour detection. Vietoris-Rips simplicial complexes constructed based on the image landmarks at an increasing distance threshold and topological (homological) features computed at each threshold and summarized in a form known as persistent barcodes. We vectorise the space of persistent barcodes using a technique known as persistent binning where we demonstrated the strength of it for various image analysis purposes. Different machine learning approaches are adopted to develop automatic detection of tiny texture distortion in many image analysis applications. Homological invariants used in this thesis are the 0 and 1 dimensional Betti numbers. We developed an innovative approach to design persistent homology (PH) based algorithms for automatic detection of the above described types of image distortion. In particular, we developed the first PH-detector of morphing attacks on passport face biometric images. We shall demonstrate significant accuracy of 2 such morph detection algorithms with 4 types of automatically extracted image landmarks: Local Binary patterns (LBP), 8-neighbour super-pixels (8NSP), Radial-LBP (R-LBP) and centre-symmetric LBP (CS-LBP). Using any of these techniques yields several persistent barcodes that summarise persistent topological features that help gaining insights into complex hidden structures not amenable by other image analysis methods. We shall also demonstrate significant success of a similarly developed PH-based universal steganalysis tool capable for the detection of secret messages hidden inside digital images. We also argue through a pilot study that building PH records from digital images can differentiate breast malignant tumours from benign tumours using digital mammographic images. The research presented in this thesis creates new opportunities to build real applications based on TDA and demonstrate many research challenges in a variety of image processing/analysis tasks. For example, we describe a TDA-based exemplar image inpainting technique (TEBI), superior to existing exemplar algorithm, for the reconstruction of missing image regions

    Spatially-dense 3D facial asymmetry assessment in both typical and disordered growth

    Get PDF
    Mild facial asymmetries are common in typical growth patterns. Therefore, detection of disordered facial growth patterns in individuals characterized by asymmetries is preferably accomplished by reference to the typical variation found in the general population rather than to some ideal of perfect symmetry, which rarely exists. This presents a challenge in developing an asymmetry assessment tool that is applicable, without modification, to detect both mild and severe facial asymmetries. In this paper we use concepts from geometric morphometrics to obtain robust and spatially-dense asymmetry assessments using a superimposition protocol for comparison of a face with its mirror image. Spatially-dense localization of asymmetries was achieved using an anthropometric mask consisting of uniformly sampled quasi-landmarks that were automatically indicated on 3D facial images. Robustness, in the sense of an unbiased analysis under increasing asymmetry, was ensured by an adaptive, robust, least-squares superimposition. The degree of overall asymmetry in an individual was scored using a root-mean-squared-error, and the proportion was scored using a novel relative significant asymmetry percentage. This protocol was applied to a database of 3D facial images from 359 young healthy individuals and three individuals with disordered facial growth. Typical asymmetry statistics were derived and were mainly located on, but not limited to, the lower two-thirds of the face in males and females. The asymmetry in males was more extensive and of a greater magnitude than in females. This protocol and proposed scoring of asymmetry with accompanying reference statistics will be useful for the detection and quantification of facial asymmetry in future studies

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    Biometrics, presents, futures: the imaginative politics of science–society orderings

    Get PDF
    Biometric technology encompasses a proliferating array of data forms, applications, and stakeholders but has raised numerous social and ethical concerns. This article examines contending perceptions of biometrics by developing a three-way framework of science–society orderings, drawn from social studies of biometrics and wider science studies literature. By analysing documentary sources and participant observation data through this framework, the article identifies a series of distinct normative interpretations or imaginaries of biometrics. It is argued that these imaginaries, described, respectively, as ‘public good’, ‘collective control’, and ‘societal risks’, project contending normative framings of science–society relations. These imaginaries were also however found to reflexively encompass perceived challenges, giving rise to practices that I term imaginative politics. These findings raise the need for science policy studies to consider the distinction between imagining and realizing in greater depth and to consider more profoundly the politics of science–society co-production

    The utility of gait as a biological characteristic in forensic investigations – An empirical examination of movement pattern variation using biomechanical and anthropological principles

    Get PDF
    Forensic gait analysis is generally defined as the analysis of gait features from video footage to assist in criminal investigations. Although an attractive means to detect suspects since data can be collected from a distance without their knowledge, forensic gait analysis presently lacks method validation and quality standards, not only due to insufficient research, but also because certain scientific foundations, such as the assumption of gait uniqueness, have not been adequately addressed. To test the scientific basis of this premise, a suitable dataset replicating an ideal forensic gait analysis scenario was compiled from the Karlsruhe Institute of Technology (Germany) database. Biomechanical analysis of sagittal plane human motion in the bilateral shoulder, elbow, hip, knee, and ankle joints was conducted across complete gait cycles of twenty participants, to investigate the degree to which intraindividual variation impacts interindividual variation, according to the following aims: (1) to better understand the relationship between form (anatomy) and function (physiology) of human gait, (2) to investigate the basis of gait uniqueness by examining similarities and differences in joint angles, and (3) to build upon current theoretical foundations of gait-based human identification. The findings indicate different degrees of movement asymmetry given body region and gait sub-phase, thereby challenging previous methods employing interchangeable use of bilateral motion data, and the use of ‘average’ gait cycles to represent the gait of an individual irrespective of body side. Furthermore, interindividual variability in all five joints is influenced by body side to different extents depending on gait sub-phase and body region, thereby challenging the claim of holistic uniqueness of gait features across all body regions and gait events. Given the findings of this thesis and paucity regarding empirical basis to support expertise, exerting caution when evaluating gait-based evidence admissibility is highly recommended, since the utility of gait in identification is currently limited
    corecore