26,310 research outputs found

    Analysing Data-To-Text Generation Benchmarks

    Get PDF
    Recently, several data-sets associating data to text have been created to train data-to-text surface realisers. It is unclear however to what extent the surface realisation task exercised by these data-sets is linguistically challenging. Do these data-sets provide enough variety to encourage the development of generic, high-quality data-to-text surface realisers ? In this paper, we argue that these data-sets have important drawbacks. We back up our claim using statistics, metrics and manual evaluation. We conclude by eliciting a set of criteria for the creation of a data-to-text benchmark which could help better support the development, evaluation and comparison of linguistically sophisticated data-to-text surface realisers

    Breaking the habit: measuring and predicting departures from routine in individual human mobility

    No full text
    Researchers studying daily life mobility patterns have recently shown that humans are typically highly predictable in their movements. However, no existing work has examined the boundaries of this predictability, where human behaviour transitions temporarily from routine patterns to highly unpredictable states. To address this shortcoming, we tackle two interrelated challenges. First, we develop a novel information-theoretic metric, called instantaneous entropy, to analyse an individual’s mobility patterns and identify temporary departures from routine. Second, to predict such departures in the future, we propose the first Bayesian framework that explicitly models breaks from routine, showing that it outperforms current state-of-the-art predictor

    Garbage collection auto-tuning for Java MapReduce on Multi-Cores

    Get PDF
    MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present MRJ, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a four-core, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that Java runtime garbage collection has on the performance and scalability of MRJ. We propose the use of memory management auto-tuning techniques based on machine learning. With our auto-tuning approach, we are able to achieve MRJ performance within 10% of optimal on 75% of our benchmark tests

    Designing a CPU model: from a pseudo-formal document to fast code

    Get PDF
    For validating low level embedded software, engineers use simulators that take the real binary as input. Like the real hardware, these full-system simulators are organized as a set of components. The main component is the CPU simulator (ISS), because it is the usual bottleneck for the simulation speed, and its development is a long and repetitive task. Previous work showed that an ISS can be generated from an Architecture Description Language (ADL). In the work reported in this paper, we generate a CPU simulator directly from the pseudo-formal descriptions of the reference manual. For each instruction, we extract the information describing its behavior, its binary encoding, and its assembly syntax. Next, after automatically applying many optimizations on the extracted information, we generate a SystemC/TLM ISS. We also generate tests for the decoder and a formal specification in Coq. Experiments show that the generated ISS is as fast and stable as our previous hand-written ISS.Comment: 3rd Workshop on: Rapid Simulation and Performance Evaluation: Methods and Tools (2011

    FraudDroid: Automated Ad Fraud Detection for Android Apps

    Get PDF
    Although mobile ad frauds have been widespread, state-of-the-art approaches in the literature have mainly focused on detecting the so-called static placement frauds, where only a single UI state is involved and can be identified based on static information such as the size or location of ad views. Other types of fraud exist that involve multiple UI states and are performed dynamically while users interact with the app. Such dynamic interaction frauds, although now widely spread in apps, have not yet been explored nor addressed in the literature. In this work, we investigate a wide range of mobile ad frauds to provide a comprehensive taxonomy to the research community. We then propose, FraudDroid, a novel hybrid approach to detect ad frauds in mobile Android apps. FraudDroid analyses apps dynamically to build UI state transition graphs and collects their associated runtime network traffics, which are then leveraged to check against a set of heuristic-based rules for identifying ad fraudulent behaviours. We show empirically that FraudDroid detects ad frauds with a high precision (93%) and recall (92%). Experimental results further show that FraudDroid is capable of detecting ad frauds across the spectrum of fraud types. By analysing 12,000 ad-supported Android apps, FraudDroid identified 335 cases of fraud associated with 20 ad networks that are further confirmed to be true positive results and are shared with our fellow researchers to promote advanced ad fraud detectionComment: 12 pages, 10 figure

    An extensible benchmark and tooling for comparing reverse engineering approaches

    Get PDF
    Various tools exist to reverse engineer software source code and generate design information, such as UML projections. Each has specific strengths and weaknesses, however no standardised benchmark exists that can be used to evaluate and compare their performance and effectiveness in a systematic manner. To facilitate such comparison in this paper we introduce the Reverse Engineering to Design Benchmark (RED-BM), which consists of a comprehensive set of Java-based targets for reverse engineering and a formal set of performance measures with which tools and approaches can be analysed and ranked. When used to evaluate 12 industry standard tools performance figures range from 8.82\% to 100\% demonstrating the ability of the benchmark to differentiate between tools. To aid the comparison, analysis and further use of reverse engineering XMI output we have developed a parser which can interpret the XMI output format of the most commonly used reverse engineering applications, and is used in a number of tools
    corecore