914 research outputs found

    The emergence of self-organisation in social systems: the case of the geographic industrial clusters

    Get PDF
    The objective of this work is to use complexity theory to propose a new interpretation of industrial clusters. Industrial clusters constitute a specific type of econosphere, whose driving principles are self-organisation, economies of diversity and a configuration that optimises the exploration of diversity starting from the configuration of connectivity of the system. This work shows the centrality of diversity by linking complexity theory (intended as "a method for understanding diversity"') to different concepts such as power law distributions, self-organisation, autocatalytic cycles and connectivity.I propose a method to distinguish self-organising from non self-organising agglomerations, based on the correlation between self-organising dynamics and power law network theories. Self-organised criticality, rank-size rule and scale-free networks theories become three aspects indicating a common underlying pattern, i.e. the edge of chaos dynamic. I propose a general model of development of industrial clusters, based on the mutual interaction between social and economic autocatalytic cycle. Starting from Kauffman's idea(^2) on the autocatalytic properties of diversity, I illustrate how the loops of the economies of diversity are based on the expansion of systemic diversity (product of diversity and connectivity). My thesis provides a way to measure systemic diversity. In particular I introduce the distinction between modular innovation at the agent level and architectural innovation at the network level and show that the cluster constitutes an appropriate organisational form to manage the tension and dynamics of simultaneous modular and architectural innovation. The thesis is structured around two propositions: 1. Self-organising systems are closer to a power law than hierarchical systems or aggregates (collection of parts). For industrial agglomerations (SLLs), the closeness to a power law is related to the degree of self-organisation present in the agglomeration, and emerges in the agglomeration’s structural and/or behavioural properties subject to self-organising dynamic.2. Self-organising systems maximise the product of diversity times connectivity at a rate higher than hierarchical systems

    Complexity Heliophysics: A lived and living history of systems and complexity science in Heliophysics

    Full text link
    In this piece we study complexity science in the context of Heliophysics, describing it not as a discipline, but as a paradigm. In the context of Heliophysics, complexity science is the study of a star, interplanetary environment, magnetosphere, upper and terrestrial atmospheres, and planetary surface as interacting subsystems. Complexity science studies entities in a system (e.g., electrons in an atom, planets in a solar system, individuals in a society) and their interactions, and is the nature of what emerges from these interactions. It is a paradigm that employs systems approaches and is inherently multi- and cross-scale. Heliophysics processes span at least 15 orders of magnitude in space and another 15 in time, and its reaches go well beyond our own solar system and Earth's space environment to touch planetary, exoplanetary, and astrophysical domains. It is an uncommon domain within which to explore complexity science. After first outlining the dimensions of complexity science, the review proceeds in three epochal parts: 1) A pivotal year in the Complexity Heliophysics paradigm: 1996; 2) The transitional years that established foundations of the paradigm (1996-2010); and 3) The emergent literature largely beyond 2010. This review article excavates the lived and living history of complexity science in Heliophysics. The intention is to provide inspiration, help researchers think more coherently about ideas of complexity science in Heliophysics, and guide future research. It will be instructive to Heliophysics researchers, but also to any reader interested in or hoping to advance the frontier of systems and complexity science

    Part 3: Systemic risk in ecology and engineering

    Get PDF
    The Federal Reserve Bank of New York released a report -- New Directions for Understanding Systemic Risk -- that presents key findings from a cross-disciplinary conference that it cosponsored in May 2006 with the National Academy of Sciences' Board on Mathematical Sciences and Their Applications. ; The pace of financial innovation over the past decade has increased the complexity and interconnectedness of the financial system. This development is important to central banks, such as the Federal Reserve, because of their traditional role in addressing systemic risks to the financial system. ; To encourage innovative thinking about systemic issues, the New York Fed partnered with the National Academy of Sciences to bring together more than 100 experts on systemic risk from 22 countries to compare cross-disciplinary perspectives on monitoring, addressing and preventing this type of risk. ; This report, released as part of the Bank's Economic Policy Review series, outlines some of the key points concerning systemic risk made by the various disciplines represented - including economic research, ecology, physics and engineering - as well as presentations on market-oriented models of financial crises, and systemic risk in the payments system and the interbank funds market. The report concludes with observations gathered from the sessions and a discussion of potential applications to policy. ; The three papers presented in this conference session highlighted the positive feedback effects that produce herdlike behavior in markets, and the subsequent discussion focused in part on means of encouraging heterogeneous investment strategies to counter such behavior. Participants in the session also discussed the types of models used to study systemic risk and commented on the challenges and trade-offs researchers face in developing their models.Financial risk management ; Financial markets ; Financial stability ; Financial crises

    Interaction dynamics and autonomy in cognitive systems

    Get PDF
    The concept of autonomy is of crucial importance for understanding life and cognition. Whereas cellular and organismic autonomy is based in the self-production of the material infrastructure sustaining the existence of living beings as such, we are interested in how biological autonomy can be expanded into forms of autonomous agency, where autonomy as a form of organization is extended into the behaviour of an agent in interaction with its environment (and not its material self-production). In this thesis, we focus on the development of operational models of sensorimotor agency, exploring the construction of a domain of interactions creating a dynamical interface between agent and environment. We present two main contributions to the study of autonomous agency: First, we contribute to the development of a modelling route for testing, comparing and validating hypotheses about neurocognitive autonomy. Through the design and analysis of specific neurodynamical models embedded in robotic agents, we explore how an agent is constituted in a sensorimotor space as an autonomous entity able to adaptively sustain its own organization. Using two simulation models and different dynamical analysis and measurement of complex patterns in their behaviour, we are able to tackle some theoretical obstacles preventing the understanding of sensorimotor autonomy, and to generate new predictions about the nature of autonomous agency in the neurocognitive domain. Second, we explore the extension of sensorimotor forms of autonomy into the social realm. We analyse two cases from an experimental perspective: the constitution of a collective subject in a sensorimotor social interactive task, and the emergence of an autonomous social identity in a large-scale technologically-mediated social system. Through the analysis of coordination mechanisms and emergent complex patterns, we are able to gather experimental evidence indicating that in some cases social autonomy might emerge based on mechanisms of coordinated sensorimotor activity and interaction, constituting forms of collective autonomous agency

    Forecasting, When Power Law Distributions Apply

    No full text
    Whilst a lot of our strategic focus in the public sector is on linear policy approaches, many systems/ phenomena of importance are defined as non-linear or far from equilibrium. Traditional approaches to linear forecasting have not proved effective for non-linear systems, since non-linear systems follow a different set of rules. Historically, non-linear systems were too hard to forecast, but over recent decades some rules and approaches are starting to emerge. One important and clearly defined category of non-linear systems are those that follow a ‘power-law’ distribution rather than the ‘normal’ distribution, which is often associated with linear systems or systems in equilibrium. My research collects, analyses, and does a comparative analysis of the different power law populations, as well as the main strategic forecasting techniques that can be applied to those populations/ systems. Overall Conclusions and observations. Just as in science and mathematics, there is now a clearly defined separation and understanding of linear and non-linear systems and the rules that apply to each. My thesis has as its central theme, the idea that strategy as a subject also fits this same philosophical separation of approaches, which I have called the strategic planning versus the strategic thinking divide. Strategic planning is essentially the linear approach – being rational and assuming relatively stable conditions. Strategic thinking assumes the world is effectively non-linear and ‘far from equilibrium’. Non-linear approaches mean acknowledging concepts like; punctuated equilibrium, power law ‘log-log’ graphs, ‘scale-free’ characteristics, ‘self organising criticality’, accepting only pattern prediction (including 1/f formulas) and not precise prediction etc. Understanding non-linearity is essential to understand such things as ‘Black Swans’. Luck, serendipity and ‘bounded rationality’ are always involved in non-linear complex adaptive systems, whereas linear systems tend to comply with the so called ‘rational’ traditions in science and economics. Power law statistical distributions can be seen in a wide variety of non-linear natural and man-made phenomena, from earthquakes and solar flares to populations of cities and sales of books. This sheer diversity of effects that have power law distributions is actually an amazing fact that has only become evident over the last decade or so. Since the world contains aspects that are clearly linear and other aspects that are clearly non-linear, it is essential for someone interested in strategy to be able to understand both systems and be able to apply the correct techniques to each approach. The two parts of ‘punctuated equilibrium’ effectively link the two strategic approaches together as there is only one world and not two separate realities. It therefore follows that a strategist needs a good understanding of both strategic planning and strategic thinking, since both are needed for different phases or periods, and perhaps both are needed for any period when you can't tell what phase you are in, which can also happen. I suggest that under a linear phase, the strategic planning approach should be dominant, but supported by strategic thinking (since you never know when events will turn abruptly); whereas in a turbulent non-linear period the strategic thinking approach should be dominant, but supported by strategic planning (since you know that great turbulence will not last). This is a sort of a swapping dominant/ recessive situation, which has a loose parallel in the theory of the left/ right brain split, where it is not wise to use only one style of thinking, since there are two styles which suit different situations. The key is to pick the right thinking style for the right situation. Just as we have one brain, but two thinking styles, so in the strategy toolbox we also have two valid, useful and complimentary general strategic approaches. However for this thesis, I have focused on the non-linear power law aspects of life which have strong implications for strategic thinking, since that is the new area for me as well as one of the new knowledge frontiers for strategy as a subject (and for leadership, politics and many other areas)

    Complex and Adaptive Dynamical Systems: A Primer

    Full text link
    An thorough introduction is given at an introductory level to the field of quantitative complex system science, with special emphasis on emergence in dynamical systems based on network topologies. Subjects treated include graph theory and small-world networks, a generic introduction to the concepts of dynamical system theory, random Boolean networks, cellular automata and self-organized criticality, the statistical modeling of Darwinian evolution, synchronization phenomena and an introduction to the theory of cognitive systems. It inludes chapter on Graph Theory and Small-World Networks, Chaos, Bifurcations and Diffusion, Complexity and Information Theory, Random Boolean Networks, Cellular Automata and Self-Organized Criticality, Darwinian evolution, Hypercycles and Game Theory, Synchronization Phenomena and Elements of Cognitive System Theory.Comment: unformatted version of the textbook; published in Springer, Complexity Series (2008, second edition 2010
    corecore