5,792 research outputs found

    Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number

    Get PDF
    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADPribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production

    Comparing novelty of designs from biological-inspiration with those from brainstorming

    Get PDF
    This research aims to understand the significance of biological-analogies in fostering novelty by comparing biological-analogies with other design methods for idea generation. Among other design methods, brainstorming was chosen here as benchmark. Four studies were conducted to compare: (i) the levels of abstraction at which concepts were ideated using biological inspiration (represented using biocards) with that using traditional brainstorming; and (ii) the novelty of concepts produced by using these two design methods. Concepts produced in these studies were evaluated for levels of abstraction at which they were ideated, average novelty, and proportion of high-novelty concepts. Results suggest that concepts generated using biocards were ideated at higher abstraction levels than those using brainstorming, but neither were at the highest abstraction levels. The average novelty of concepts produced using biocards was found to be greater than that using brainstorming; however, no statistically significant difference was found in the proportion of high-novelty concepts. We suspect the lack of biological knowledge and cultural difference among the subjects involved in our studies as the two reasons behind the results. The results demonstrate that the design methods substantially influence the novelty of concepts generated, while indicating the need for better training in effective use of biological-analogies

    Modeling inspiration for innovative NPD: lessons from biomimetics

    No full text
    International audienceIn biomimetic design, nature - natural phenomena, systems or organisms - is used as a source of inspiration for producing new ideas or concepts. While being widely recommended this approach lacks rigorous analysis and manageable systematization that would be needed in industrial contexts. Better modeling of this process of bioinspiration is a condition for applying bioinspiration to stimulate innovation in a controlled way. This paper presents a model for bioinspiration based on the framework of the C-K design theory. This model was elaborated considering a review of the existing literature on methods for implementing biomimetic design and an analysis of selected biomimetic product development case examples. The results reveal the main roles of biological knowledge in the design process (1) indication of a "design direction", meaning an expansion on the concepts space, (2) indication of knowledge domains where no or few knowledge is available, (3) reorganization of the knowledge base, activating knowledge bases that would not otherwise be activated. This improved understanding of the bioinspiration process outlines more sophisticated and profound conditions that have to be managed for creating value

    The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation

    Get PDF
    We isolated and characterized a Brassica C genome-specific CACTA element, which was designated Bot1 (Brassica oleracea transposon 1). After analysing phylogenetic relationships, copy numbers and sequence similarity of Bot1 and Bot1 analogues in B. oleracea (C genome) versus Brassica rapa (A genome), we concluded that Bot1 has encountered several rounds of amplification in the oleracea genome only, and has played a major role in the recent rapa and oleracea genome divergence. We performed in silico analyses of the genomic organization and internal structure of Bot1, and established which segment of Bot1 is C-genome specific. Our work reports a fully characterized Brassica repetitive sequence that can distinguish the Brassica A and C chromosomes in the allotetraploid Brassica napus, by fluorescent in situ hybridization. We demonstrated that Bot1 carries a host S locus-associated SLL3 gene copy. We speculate that Bot1 was involved in the proliferation of SLL3 around the Brassica genome. The present study reinforces the assumption that transposons are a major driver of genome and gene evolution in higher plants

    Role model (in) advertising?

    Get PDF
    The article concentrates on analysing the growing interest of academics in studying advertisements. While arguing why this perspective of reading literature may bring interesting critical results, the article focuses mainly on the character of Anna Csillag and its evolution through the twentieth century. Originally Anna Csillag was created as an advertising strategy to be used in selling hairgrowth cream. Boasting beautiful hair, the character grew in popularity across Europe, turning into a public icon of the first half of the twentieth century. Anna Csillag appears as a fictional character in Bruno Schultz’s story Księga (The Book). The article also traces other references to this figure in the twentieth and twenty-first century literary and artistic works

    Simulation of an array-based neural net model

    Get PDF
    Research in cognitive science suggests that much of cognition involves the rapid manipulation of complex data structures. However, it is very unclear how this could be realized in neural networks or connectionist systems. A core question is: how could the interconnectivity of items in an abstract-level data structure be neurally encoded? The answer appeals mainly to positional relationships between activity patterns within neural arrays, rather than directly to neural connections in the traditional way. The new method was initially devised to account for abstract symbolic data structures, but it also supports cognitively useful spatial analogue, image-like representations. As the neural model is based on massive, uniform, parallel computations over 2D arrays, the massively parallel processor is a convenient tool for simulation work, although there are complications in using the machine to the fullest advantage. An MPP Pascal simulation program for a small pilot version of the model is running

    Ultimately, Mathematics is Poetry

    Get PDF
    corecore