4,046 research outputs found

    Design thinking support: information systems versus reasoning

    Get PDF
    Numerous attempts have been made to conceive and implement appropriate information systems to support architectural designers in their creative design thinking processes. These information systems aim at providing support in very diverse ways: enabling designers to make diverse kinds of visual representations of a design, enabling them to make complex calculations and simulations which take into account numerous relevant parameters in the design context, providing them with loads of information and knowledge from all over the world, and so forth. Notwithstanding the continued efforts to develop these information systems, they still fail to provide essential support in the core creative activities of architectural designers. In order to understand why an appropriately effective support from information systems is so hard to realize, we started to look into the nature of design thinking and on how reasoning processes are at play in this design thinking. This investigation suggests that creative designing rests on a cyclic combination of abductive, deductive and inductive reasoning processes. Because traditional information systems typically target only one of these reasoning processes at a time, this could explain the limited applicability and usefulness of these systems. As research in information technology is increasingly targeting the combination of these reasoning modes, improvements may be within reach for design thinking support by information systems

    The influence of conceptual user models on the creation and interpretation of diagrams representing reactive systems

    Get PDF
    In system design, many diagrams of many different types are used. Diagrams communicate design aspects between members of the development team, and between these experts and the non-expert customers and future users. Mastering the creation of diagrams is often a challenging task, judging by particular errors persistently found in diagrams created by undergraduate computer science students. We assume a possible misalignment between human perception and cognition on the one hand and the diagrams’ structure and syntax on the other. This article presents the results of an investigation of such a misalignment. We focus on the deployment of so-called 'conceptual user models' (mental models, created by users in their mind) at the creation of diagrams. We propose a taxonomy for mental mappings, used for categorization of representations. We describe an experiment where naive and novice subjects created one or several diagrams of a familiar task. We use our taxonomy for analysing these diagrams, both for the represented task structure and the symbols used. The results indeed show a mismatch between mental models and currently used diagram techniques

    Psychological challenges for the analysis of style.

    Get PDF
    This article remains the copyright of Cambridge University Press. The definitive version of this article can be found at: http://dx.doi.org/10.1017/S089006040606015XAnalyses of styles in design have paid little attention to how people see style, and how designers use perceptions of style to guide designing. While formal and computational methods for analysing styles and generating designs provide impressively parsimonious accounts of what some styles are, they do not address many of the factors that influence how humans understand styles. The subtlety of human style judgements raises challenges for computational approaches to style. This paper differentiates between a range of distinct meanings of 'style', and explores how designers and ordinary people learn and apply perceptual similarity classes and style concepts in different situations to interpret and create designed artefacts. A range of psychological evidence indicates that style perception is dependent on knowledge, and involves the interaction of perceptual recognition of style features and explanatory inference processes that create a coherent understanding of an object as an exemplar of a style. This paper concludes by outlining how formal style analyses can be used in combination with psychological research to develop a fuller understanding of style perception and creative design

    Comparison and Mapping Facilitate Relation Discovery and Predication

    Get PDF
    Relational concepts play a central role in human perception and cognition, but little is known about how they are acquired. For example, how do we come to understand that physical force is a higher-order multiplicative relation between mass and acceleration, or that two circles are the same-shape in the same way that two squares are? A recent model of relational learning, DORA (Discovery of Relations by Analogy; Doumas, Hummel & Sandhofer, 2008), predicts that comparison and analogical mapping play a central role in the discovery and predication of novel higher-order relations. We report two experiments testing and confirming this prediction

    Similar or Different? The Role of the Ventrolateral Prefrontal Cortex in Similarity Detection

    Get PDF
    Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., “both have peel”), while others continue to look for differences between these objects (e.g., “one is yellow, the other is orange”). These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC). We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI) study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1) Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2) Abstraction per se activates the left dorsolateral PFC

    Preserved thematic and impaired taxonomic categorisation: a case study

    Get PDF
    The present paper seeks to understand more about categorisation and its relation to naming. A patient with language impairments (LEW) was examined in a three-part investigation of his ability to make classification decisions. The first part demonstrated LEW's inability to make taxonomic classifications of shape thus confirming his previously documented impaired perceptual categorisation. The second part demonstrated that, despite LEW's inability to perform simple taxonomic classifications, he could reason analogically as well as a 4/5 year-old child. It is therefore argued that taxonomic classifications cannot be driven by the development of analogical reasoning. The third part more directly contrasted thematic and taxonomic classification. LEW showed a preference for thematic classification. In fact, there was no evidence of any substantial ability to make taxonomic colour classifications despite evidence for good preservation of the associated object-colour knowledge

    Interpretation-driven mapping: A framework for conducting search and re-representation in parallel for computational analogy in design

    Get PDF
    This paper presents a framework for the interactions between the processes of mapping and rerepresentation within analogy making. Analogical reasoning systems for use in design tasks require representations that are open to being reinterpreted. The framework, interpretation-driven mapping, casts the process of constructing an analogical relationship as requiring iterative, parallel interactions between mapping and interpreting. This paper argues that this interpretation-driven approach focuses research on a fundamental problem in analogy making: how do the representations that make new mappings possible emerge during the mapping process? The framework is useful for both describing existing analogy-making models and designing future ones. The paper presents a computational model informed by the framework Idiom, which learns ways to reinterpret the representations of objects as it maps between them. The results of an implementation in the domain of visual analogy are presented to demonstrate its feasibility. Analogies constructed by the system are presented as examples. The interpretation-driven mapping framework is then used to compare representational change in Idiom to that in three previously published systems
    corecore