7,008 research outputs found

    Upright posture and the meaning of meronymy: A synthesis of metaphoric and analytic accounts

    Get PDF
    Cross-linguistic strategies for mapping lexical and spatial relations from body partonym systems to external object meronymies (as in English ‘table leg’, ‘mountain face’) have attracted substantial research and debate over the past three decades. Due to the systematic mappings, lexical productivity and geometric complexities of body-based meronymies found in many Mesoamerican languages, the region has become focal for these discussions, prominently including contrastive accounts of the phenomenon in Zapotec and Tzeltal, leading researchers to question whether such systems should be explained as global metaphorical mappings from bodily source to target holonym or as vector mappings of shape and axis generated “algorithmically”. I propose a synthesis of these accounts in this paper by drawing on the species-specific cognitive affordances of human upright posture grounded in the reorganization of the anatomical planes, with a special emphasis on antisymmetrical relations that emerge between arm-leg and face-groin antinomies cross-culturally. Whereas Levinson argues that the internal geometry of objects “stripped of their bodily associations” (1994: 821) is sufficient to account for Tzeltal meronymy, making metaphorical explanations entirely unnecessary, I propose a more powerful, elegant explanation of Tzeltal meronymic mapping that affirms both the geometric-analytic and the global-metaphorical nature of Tzeltal meaning construal. I do this by demonstrating that the “algorithm” in question arises from the phenomenology of movement and correlative body memories—an experiential ground which generates a culturally selected pair of inverse contrastive paradigm sets with marked and unmarked membership emerging antithetically relative to the transverse anatomical plane. These relations are then selected diagrammatically for the classification of object orientations according to systematic geometric iconicities. Results not only serve to clarify the case in question but also point to the relatively untapped potential that upright posture holds for theorizing the emergence of human cognition, highlighting in the process the nature, origins and theoretical validity of markedness and double scope conceptual integration

    The challenge of complexity for cognitive systems

    Get PDF
    Complex cognition addresses research on (a) high-level cognitive processes – mainly problem solving, reasoning, and decision making – and their interaction with more basic processes such as perception, learning, motivation and emotion and (b) cognitive processes which take place in a complex, typically dynamic, environment. Our focus is on AI systems and cognitive models dealing with complexity and on psychological findings which can inspire or challenge cognitive systems research. In this overview we first motivate why we have to go beyond models for rather simple cognitive processes and reductionist experiments. Afterwards, we give a characterization of complexity from our perspective. We introduce the triad of cognitive science methods – analytical, empirical, and engineering methods – which in our opinion have all to be utilized to tackle complex cognition. Afterwards we highlight three aspects of complex cognition – complex problem solving, dynamic decision making, and learning of concepts, skills and strategies. We conclude with some reflections about and challenges for future research

    Concepts of Law

    Get PDF

    Information and Experience in Metaphor: A Perspective From Computer Analysis

    Get PDF
    Novel linguistic metaphor can be seen as the assignment of attributes to a topic through a vehicle belonging to another domain. The experience evoked by the vehicle is a significant aspect of the meaning of the metaphor, especially for abstract metaphor, which involves more than mere physical similarity. In this article I indicate, through description of a specific model, some possibilities as well as limitations of computer processing directed toward both informative and experiential/affective aspects of metaphor. A background to the discussion is given by other computational treatments of metaphor analysis, as well as by some questions about metaphor originating in other disciplines. The approach on which the present metaphor analysis model is based is consistent with a theory of language comprehension that includes both the intent of the originator and the effect on the recipient of the metaphor. The model addresses the dual problem of (a) determining potentially salient properties of the vehicle concept, and (b) defining extensible symbolic representations of such properties, including affective and other connotations. The nature of the linguistic analysis underlying the model suggests how metaphoric expression of experiential components in abstract metaphor is dependent on the nominalization of actions and attributes. The inverse process of undoing such nominalizations in computer analysis of metaphor constitutes a translation of a metaphor to a more literal expression within the metaphor-nonmetaphor dichotomy
    corecore