32 research outputs found

    Proceedings of the KI 2009 Workshop on Complex Cognition

    Get PDF
    The KI ´09 workshop on Complex Cognition was a joint venture of the Cognition group of the Special Interest Group Artificial Intelligence of the German Computer Science Society (Gesellschaft für Informatik) and the German Cognitive Science Association. Dealing with complexity has become one of the great challenges for modern information societies. To reason and decide, plan and act in complex domains is no longer limited to highly specialized professionals in restricted areas such as medical diagnosis, controlling technical processes, or serious game playing. Complexity has reached everyday life and affects people in such mundane activities as buying a train ticket, investing money, or connecting a home desktop to the internet. Research in cognitive AI can contribute to supporting people navigating through the jungle of everyday reasoning, decision making, planning and acting by providing intelligent support technology. Lessons learned from expert systems research of the nineteen-eighties show that the aim should not be to provide for fully automated systems which can solve specialized tasks autonomously but instead to develop interactive assistant systems where user and system work together by taking advantage of the respective strengths of human and machine. To accomplish a smooth collaboration between humans and intelligent systems, basic research in cognition is a necessary precondition. Insights into cognitive structures and processes underlying successful human reasoning and planning can provide suggestions for algorithm design. Even more important, insights into restrictions and typical errors and misconceptions of the cognitive systems provide information about those parts of a complex task from which the human should be relieved. For successful human-computer interaction in complex domains it has, furthermore, to be decided which information should be presented when, in what way, to the user. We strongly believe that symbolic approaches of AI and psychological research of higher cognition are at the core of success for the endeavor to create intelligent assistant system for complex domains. While insight into the neurological processes of the brain and into the realization of basic processes of perception, attention and senso-motoric coordination are important for the basic understanding of the principles of human intelligence, these processes have a much too fine granularity for the design and realization of interactive systems which must communicate with the user on knowledge level. If human system users are not to be incapacitated by a system, system decisions must be transparent for the user and the system must be able to provide explanations for the reasons of its proposals and recommendations. Therefore, even when some of the underlying algorithms are based on statistical or neuronal approaches, the top-level of such systems must be symbolical and rule-based. The papers presented at this workshop on complex cognition give an inspiring and promising overview of current work in the field which can provide first building stones for our endeavor to create knowledge level intelligent assistant systems for complex domains. The topics cover modelling basic cognitive processes, interfacing subsymbolic and symbolic representations, dealing with continuous time, Bayesian identification of problem solving strategies, linguistically inspired methods for assessing complex cognitive processes and complex domains such as recognition of sketches, predicting changes in stocks, spatial information processing, and coping with critical situations

    Interactions between perception and rule-construction in human and machine concept learning

    Get PDF
    Weitnauer E. Interactions between perception and rule-construction in human and machine concept learning. Bielefeld: Universität Bielefeld; 2016.Concepts are central to human cognition and one important type of concepts can be represented naturally with symbolic rules. The learning of such rule-based concepts from examples relies both on a process of perception, which extracts information from the presented examples, and a process of concept construction, which leads to a rule that matches the given examples and can be applied to categorize new ones. This thesis introduces PATHS, a novel cognitive process model that learns structured, rule-based concepts and takes the active and explorative nature of perception into account. In contrast to existing models, the PATHS model tightly integrates perception and rule construction. The model is applied to a challenging problem domain, the physical Bongard problems, and its performance under different learning conditions is analyzed and compared to that of human solvers

    Extending Cognitive Architectures with Spatial and Visual Imagery Mechanisms

    Full text link
    This research presents a computational synthesis of cognition with spatial and visual imagery processing by extending a symbolic cognitive architecture (Soar) with mechanisms to support reasoning with quantitative spatial and visual depictive representations. Inspired by psychological and neurological evidence of mental imagery, our primary goals are to achieve new functional capability and computational efficiency in a task-independent manner. We describe how our theory and the corresponding architecture derive from behavioral, biological, functional, and computational constraints and demonstrate results from three different domains. Our evaluation reveals that in tasks where reasoning includes many spatial or visual properties, the combination of amodal and perceptual representations provides an agent with additional functional capability and improves its problem-solving quality. We also show that specialized processing units specific to a perceptual representation but independent of task knowledge are likely to be necessary in order to realize computational efficiency in a general manner. The research is significant because past research in cognitive architectures primarily views amodal, symbolic representations as being sufficient for knowledge representation and thought. We expand those ideas with the notion that perceptual-based representations participate directly in the thinking rather than serving simply as a source of sensory information. The new capabilities of the resulting architecture, which includes Soar and its Spatial-Visual Imagery (SVI) component, emerge from its ability to amalgamate symbolic and perceptual representations and use them to inform reasoning. Soar’s symbolic memories and processes provide the building blocks necessary for high-level control in the pursuit of goals, learning, and the encoding of amodal, symbolic knowledge for abstract reasoning. SVI encompasses the quantitative spatial and visual depictive representations and processes specialized for efficient construction and extraction of spatial and visual properties.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60876/1/slathrop_1.pd

    Une approche pour supporter l'analyse qualitative des suites d'actions dans un environnement géographique virtuel et dynamique : l'analyse " What-if " comme exemple

    Get PDF
    Nous proposons une approche basée sur la géosimulation multi-agent et un outil d’aide à la décision pour supporter l’analyse « What-if » durant la planification des suites d’actions (plans) dans un environnement géographique dynamique. Nous présentons les caractéristiques du raisonnement « What-if » en tant 1) que simulation mentale 2) suivant un processus en trois étapes et 3) basé sur du raisonnement causal qualitatif. Nous soulignons les limites de la cognition humaine pour appliquer ce raisonnement dans le cadre de la planification des suites d’actions dans un environnement géographique dynamique et nous identifions les motivations de notre recherche. Ensuite, nous présentons notre approche basée sur la géosimulation multi-agent et nous identifions ses caractéristiques. Nous traitons en particulier trois problématiques majeures. La première problématique concerne la modélisation des phénomènes géographiques dynamiques. Nous soulignons les limites des approches existantes et nous présentons notre modèle basé sur le concept de situation spatio-temporelle que nous représentons en utilisant le formalisme de graphes conceptuels. En particulier, nous présentons comment nous avons défini ce concept en nous basant sur les archétypes cognitifs du linguiste J-P. Desclés. La deuxième problématique concerne la transformation des résultats d’une géosimulation multi-agent en une représentation qualitative exprimée en termes de situations spatio-temporelles. Nous présentons les étapes de traitement de données nécessaires pour effectuer cette transformation. La troisième problématique concerne l’inférence des relations causales entre des situations spatio-temporelles. En nous basant sur divers travaux traitant du raisonnement causal et de ses caractéristiques, nous proposons une solution basée sur des contraintes causales spatio-temporelles et de causalité pour établir des relations de causation entre des situations spatio-temporelles. Finalement, nous présentons MAGS-COA, une preuve de concept que nous avons implémentée pour évaluer l’adéquation de notre approche comme support à la résolution de problèmes réels. Ainsi, les principales contributions de notre travail sont: 1- Une approche basée sur la géosimulation multi-agent pour supporter l’analyse « What-if » des suites d’actions dans des environnements géographiques virtuels. 2- L’application d’un modèle issu de recherches en linguistique à un problème d’intérêt pour la recherche en raisonnement spatial. 3- Un modèle qualitatif basé sur les archétypes cognitifs pour modéliser des situations dynamiques dans un environnement géographique virtuel. 4- MAGS-COA, une plateforme de simulation et d’analyse qualitative des situations spatio-temporelles. 5- Un algorithme pour l’identification des relations causales entre des situations spatio-temporelles.We propose an approach and a tool based on multi-agent geosimulation techniques in order to support courses of action’s (COAs) “What if” analysis in the context of dynamic geographical environments. We present the characteristics of “What if” thinking as a three-step mental simulation process based on qualitative causal reasoning. We stress humans’ cognition limits of such a process in dynamic geographical contexts and we introduce our research motivations. Then we present our multi-agent geosimulation-based approach and we identify its characteristics. We address next three main problems. The first problem concerns modeling of dynamic geographical phenomena. We stress the limits of existing models and we present our model which is based on the concept of spatio-temporal situations. Particularly, we explain how we define our spatio-temporal situations based on the concept of cognitive archetypes proposed by the linguist J-P. Desclés. The second problem consists in transforming the results of multi-agent geosimulations into a qualitative representation expressed in terms of spatio-temporal situations and represented using the conceptual graphs formalism. We present the different steps required for such a transformation. The third problem concerns causal reasoning about spatio-temporal situations. In order to address this problem, we were inspired by works of causal reasoning research community to identify the constraints that must hold to identify causal relationships between spatio-temporal situations. These constraints are 1) knowledge about causality, 2) temporal causal constraints and 3) spatial causal constraints. These constraints are used to infer causal relationships among the results of multi-agent geosimulations. Finally, we present MAGS-COA, a proof on concept that we implemented in order to evaluate the suitability of our approach as a support to real problem solving. The main contributions of this thesis are: 1- An approach based on multi-agent geosimulation to support COA’s “What if” analysis in the context of virtual geographic environments. 2- The application of a model proposed in the linguistic research community to a problem of interest to spatial reasoning research community. 3- A qualitative model based on cognitive archetypes to model spatio-temporal situations. 4- MAGS-COA, a platform of simulation and qualitative analysis of spatio-temporal situations. 5- An algorithm to identify causal relationships between spatio-temporal situations

    Proceedings of the 9th Arab Society for Computer Aided Architectural Design (ASCAAD) international conference 2021 (ASCAAD 2021): architecture in the age of disruptive technologies: transformation and challenges.

    Get PDF
    The ASCAAD 2021 conference theme is Architecture in the age of disruptive technologies: transformation and challenges. The theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    METROPOLITAN ENCHANTMENT AND DISENCHANTMENT. METROPOLITAN ANTHROPOLOGY FOR THE CONTEMPORARY LIVING MAP CONSTRUCTION

    Get PDF
    We can no longer interpret the contemporary metropolis as we did in the last century. The thought of civil economy regarding the contemporary Metropolis conflicts more or less radically with the merely acquisitive dimension of the behaviour of its citizens. What is needed is therefore a new capacity for imagining the economic-productive future of the city: hybrid social enterprises, economically sustainable, structured and capable of using technologies, could be a solution for producing value and distributing it fairly and inclusively. Metropolitan Urbanity is another issue to establish. Metropolis needs new spaces where inclusion can occur, and where a repository of the imagery can be recreated. What is the ontology behind the technique of metropolitan planning and management, its vision and its symbols? Competitiveness, speed, and meritocracy are political words, not technical ones. Metropolitan Urbanity is the characteristic of a polis that expresses itself in its public places. Today, however, public places are private ones that are destined for public use. The Common Good has always had a space of representation in the city, which was the public space. Today, the Green-Grey Infrastructure is the metropolitan city's monument that communicates a value for future generations and must therefore be recognised and imagined; it is the production of the metropolitan symbolic imagery, the new magic of the city
    corecore