20,588 research outputs found

    An analog feedback associative memory

    Get PDF
    A method for the storage of analog vectors, i.e., vectors whose components are real-valued, is developed for the Hopfield continuous-time network. An important requirement is that each memory vector has to be an asymptotically stable (i.e. attractive) equilibrium of the network. Some of the limitations imposed by the continuous Hopfield model on the set of vectors that can be stored are pointed out. These limitations can be relieved by choosing a network containing visible as well as hidden units. An architecture consisting of several hidden layers and a visible layer, connected in a circular fashion, is considered. It is proved that the two-layer case is guaranteed to store any number of given analog vectors provided their number does not exceed 1 + the number of neurons in the hidden layer. A learning algorithm that correctly adjusts the locations of the equilibria and guarantees their asymptotic stability is developed. Simulation results confirm the effectiveness of the approach

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes

    The Resilience of Computationalism

    Get PDF
    Computationalism—the view that cognition is computation—has always been controversial. It faces two types of objection. According to insufficiency objections, computation is insufficient for some cognitive phenomenon X. According to objections from neural realization, cognitive processes are realized by neural processes, but neural processes have feature Y and having Y is incompatible with being (or realizing) computations. In this paper, I explain why computationalism has survived these objections. Insufficiency objections are at best partial: for all they establish, computation may be sufficient for cognitive phenomena other than X, may be part of the explanation for X, or both. Objections from neural realization are based either on a false contrast between feature Y and computation or on an account of computation that is too vague to yield the desired conclusion. To adjudicate the dispute between computationalism and its foes, I will conclude that we need a better account of computation

    Analog Neural Programmable Optimizers in CMOS VLSI Technologies

    Get PDF
    A 3-ÎŒm CMOS IC is presented demonstrating the concept of an analog neural system for constrained optimization. A serial time-multiplexed general-purpose architecture is introduced for the real-time solution of this kind of problem in MOS VLSI. This architecture is a fully programmable and reconfigurable one exploiting SC techniques for the analog part and making extensive use of digital techniques for programmability

    Analog readout for optical reservoir computers

    Full text link
    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed an analog readout suitable for time-multiplexed optoelectronic reservoir computers, capable of working in real time. The readout has been built and tested experimentally on a standard benchmark task. Its performance is better than non-reservoir methods, with ample room for further improvement. The present work thereby overcomes one of the major limitations for the future development of hardware reservoir computers.Comment: to appear in NIPS 201
    • 

    corecore