3,885 research outputs found

    A Biomechanical and Physiological Signal Monitoring System for Four Degrees of Upper Limb Movement

    Get PDF
    A lack of adherence to prescribed physical therapy regimens in improper healing results in poor outcomes for those affected by musculoskeletal disorders (MSDs) of the upper limb. Societal and psychological barriers to proper adherence can be addressed through the system presented in this work consisting of the following components: an ambulatory biosignal acquisition sleeve, an electromyography (EMG) based motion repetition detection algorithm, and the design of a compatible capacitive EMG acquisition module. The biosignal acquisition sleeve was untethered, unobtrusive to motion, contained only modular components, and collected biomechanical and physiological sensor data to form full motion profiles of the following four degrees of freedom: elbow flexion—extension, forearm pronation—supination, wrist flexion—extension, and ulnar--radial deviation. The piloted sleeve simultaneously collected data from four inertial sensors, two electromyography (EMG) sensors and a flex-bend sensor. A visualization application was developed to present the information in a manner meaningful to the user. As well, an EMG based motion repetition detector was developed for use within the system. It was validated using an existing database of 23 subjects with varying musculoskeletal health, achieving a success rate of 95.43%. This algorithm was modified for use with the sleeve, resulting in a 95% success rate. An electrode and analog front end module was proposed, relying on unique material structures and low-noise, precision sensing techniques. The system prototype presented a resource-conscious tool for multi-modality tracking of elbow, forearm, and wrist motion, which could eventually be integrated into upper limb MSD rehabilitation

    Design of a Compact Electromyograph Data Acquisition System

    Get PDF
    Our team set out to design and prototype a compact electromyography (EMG) device that measures and records electrical signals associated with muscle activity. The EMG device designed in this project begins at the electrode assembly, where input signals from the muscles are amplified. The signal is transmitted to a central signal processing electrical board. The signal enters a filtering stage before being digitized by an analog to digital converter. The microcontroller is responsible for receiving, processing, and sending the digital signal, which is converted from the microcontroller’s UART communication to serial USB format and sent to a computer through a USB communication cable. Using MATLAB, the signal data can be transferred into a computer platform to be used in other applications

    Data Display, Acquisition and Feedback System for Biomedical Experiments

    Get PDF
    Biomedical signals have various research applications in prosthetic limb development and other control applications. Consequently, a workstation that can be used to conduct biomedical experiments using EMG and other similar signals can be beneficial to the continuation of research in this growing field. We have investigated the possibility of creating a PC-based workstation to conduct these experiments using National Instrument’s LabVIEW. Our work suggests that such a system can not be used with experiments that require hard real-time control

    Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices

    Get PDF
    This tutorial is aimed primarily to non-engineers, using or planning to use surface electromyography (sEMG) as an assessment tool for muscle evaluation in the prevention, monitoring, assessment and rehabilitation fields. The main purpose is to explain basic concepts related to: (a) signal detection (electrodes, electrode–skin interface, noise, ECG and power line interference), (b) basic signal properties, such as amplitude and bandwidth, (c) parameters of the front-end amplifier (input impedance, noise, CMRR, bandwidth, etc.), (d) techniques for interference and artifact reduction, (e) signal filtering, (f) sampling and (g) A/D conversion, These concepts are addressed and discussed, with examples. The second purpose is to outline best practices and provide general guidelines for proper signal detection, conditioning and A/D conversion, aimed to clinical operators and biomedical engineers. Issues related to the sEMG origin and to electrode size, interelectrode distance and location, have been discussed in a previous tutorial. Issues related to signal processing for information extraction will be discussed in a subsequent tutorial

    A Survey about Acquisition System Design for Myoelectric Prosthesis

    Full text link
    According to the World Health Organization (WHO), 30 million people are in need of prosthetic and orthotic devices. Some people are born with this limb loss, while others lose limbs due to diseases such as Cancer, diabetes, and work accidents. Additionally, limb amputation is among the most severe and heavily reported injuries among veterans during war. The medical applications of integrated circuit technology have recently made significant advances, thus improving human quality of life. Moreover, the use of microelectronics integration dominates a lot of medical applications, especially portable and wearable battery-operated devices. Thus, the objective of this report is to provide the reader with the basic understanding of integrated solutions for controlling prosthetic limbs

    Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control

    Get PDF
    Prosthetic hand control based on the acquisition and processing of surface electromyography signals (sEMG) is a well-established method that makes use of the electric potentials evoked by the physiological contraction processes of one or more muscles. Furthermore intelligent mobile medical devices are on the brink of introducing safe and highly sophisticated systems to help a broad patient community to regain a considerable amount of life quality. The major challenges which are inherent in such integrated system’s design are mainly to be found in obtaining a compact system with a long mobile autonomy, capable of delivering the required signal requirements for EMG based prosthetic control with up to 32 simultaneous acquisition channels and – with an eye on a possible future exploitation as a medical device – a proper perspective on a low priced system. Therefore, according to these requirements we present a wireless, mobile platform for acquisition and communication of sEMG signals embedded into a complete mobile control system structure. This environment further includes a portable device such as a laptop providing the necessary computational power for the control and a commercially available robotic handprosthesis. Means of communication among those devices are based on the Bluetooth standard. We show, that the developed low cost mobile device can be used for proper prosthesis control and that the device can rely on a continuous operation for the usual daily life usage of a patient

    Assessment of trends in the cardiovascular system from time interval measurements using physiological signals obtained at the limbs

    Get PDF
    Cardiovascular diseases are an increasing source of concern in modern societies due to their increasing prevalence and high impact on the lives of many people. Monitoring cardiovascular parameters in ambulatory scenarios is an emerging approach that can provide better medical access to patients while decreasing the costs associated to the treatment of these diseases. This work analyzes systems and methods to measure time intervals between the electrocardiogram (ECG), impedance plethysmogram (IPG), and the ballistocardiogram (BCG), which can be obtained at the limbs in ambulatory scenarios using simple and cost-effective systems, to assess cardiovascular intervals of interest, such as the pulse arrival time (PAT), pulse transit time (PTT), or the pre-ejection period (PEP). The first section of this thesis analyzes the impact of the signal acquisition system on the uncertainty in timing measurements in order to establish the design specifications for systems intended for that purpose. The minimal requirements found are not very demanding yet some common signal acquisition systems do not fulfill all of them while other capabilities typically found in signal acquisition systems could be downgraded without worsening the timing uncertainty. This section is also devoted to the design of systems intended for timing measurements in ambulatory scenarios according to the specifications previously established. The systems presented have evolved from the current state-of-the-art and are designed for adequate performance in timing measurements with a minimal number of active components. The second section is focused on the measurement of time intervals from the IPG measured from limb to limb, which is a signal that until now has only been used to monitor heart rate. A model to estimate the contributions to the time events in the measured waveform of the different body segments along the current path from geometrical properties of the large arteries is proposed, and the simulation under blood pressure changes suggests that the signal is sensitive to changes in proximal sites of the current path rather than in distal sites. Experimental results show that the PAT to the hand-to-hand IPG, which is obtained from a novel four-electrode handheld system, is correlated to changes in the PEP whereas the PAT to the foot-to-foot IPG shows good performance in assessing changes in the femoral PAT. Therefore, limb-to-limb IPG measurements significantly increase the number of time intervals of interest that can be measured at the limbs since the signals deliver information from proximal sites complementary to that of other measurements typically performed at distal sites. The next section is devoted to the measurement of time intervals that involve different waves of the BCG obtained in a standing platform and whose origin is still under discussion. From the relative timing of other physiological signals, it is hypothesized that the IJ interval of the BCG is sensitive to variations in the PTT. Experimental results show that the BCG I wave is a better surrogate of the cardiac ejection time than the widely-used J wave, which is also supported by the good correlation found between the IJ interval and the aortic PTT. Finally, the novel time interval from the BCG I wave to the foot of the IPG measured between feet, which can be obtained from the same bathroom scale than the BCG, shows good performance in assessing the aortic PAT. The results presented reinforce the role of the BCG as a tool for ambulatory monitoring since the main time intervals targeted in this thesis can be obtained from the timing of its waves. Even though the methods described were tested in a small group of subjects, the results presented in this work show the feasibility and potential of several time interval measurements between the proposed signals that can be performed in ambulatory scenarios, provided the systems intended for that purpose fulfill some minimal design requirements.Les malalties cardiovasculars són una tema de preocupació creixent en societats modernes, degut a l’augment de la seva prevalença i l'elevat impacte en les vides dels pacients que les sofreixen. La mesura i monitoratge de paràmetres cardiovasculars en entorns ambulatoris és una pràctica emergent que facilita l’accés als serveis mèdics i permet reduir dràsticament els costos associats al tractament d'aquestes malalties. En aquest treball s’analitzen sistemes i mètodes per la mesura d’intervals temporals entre l’electrocardiograma (ECG), el pletismograma d’impedància (IPG) i el balistocardiograma (BCG), que es poden obtenir de les extremitats i en entorns ambulatoris a partir de sistemes de baix cost, per tal d’avaluar intervals cardiovasculars d’interès com el pulse arrival time (PAT), pulse transit time (PTT) o el pre-ejection period (PEP). En la primera secció d'aquesta tesi s’analitza l’impacte del sistema d’adquisició del senyal en la incertesa de mesures temporals, per tal d’establir els requeriments mínims que s’han de complir en entorns ambulatoris. Tot i que els valors obtinguts de l’anàlisi no són especialment exigents, alguns no són assolits en diversos sistemes habitualment utilitzats mentre que altres solen estar sobredimensionats i es podrien degradar sense augmentar la incertesa en mesures temporals. Aquesta secció també inclou el disseny i proposta de sistemes per la mesura d’intervals en entorns ambulatoris d’acord amb les especificacions anteriorment establertes, a partir de l’estat de l’art i amb l’objectiu de garantir un correcte funcionament en entorns ambulatoris amb un nombre mínim d’elements actius per reduir el cost i el consum. La segona secció es centra en la mesura d’intervals temporals a partir de l’IPG mesurat entre extremitats, que fins al moment només s’ha fet servir per mesurar el ritme cardíac. Es proposa un model per estimar la contribució de cada segment arterial per on circula el corrent a la forma d’ona obtinguda a partir de la geometria i propietats físiques de les artèries, i les simulacions suggereixen que la senyal entre extremitats és més sensible a canvis en arteries proximals que en distals. Els resultats experimentals mostren que el PAT al hand-to-hand IPG, obtingut a partir d’un innovador sistema handheld de quatre elèctrodes, està fortament correlacionat amb els canvis de PEP, mentre que el PAT al foot-to-foot IPG està correlat amb els canvis en PAT femoral. Conseqüentment, l’ILG entre extremitats augmenta de manera significativa els intervals d’interès que es poden obtenir en extremitats degut a que proporciona informació complementària a les mesures que habitualment s’hi realitzen. La tercera secció està dedicada a la mesura d’intervals que inclouen les ones del BCG vertical obtingut en plataformes, de les que encara se’n discuteix l’origen. A partir de la posició temporal relativa respecte altres ones fisiològiques, s’hipostatitza que l’interval IJ del BCG es sensible a variacions del PTT. Els resultats experimentals mostren que la ona I del BCG és un millor indicador de l’ejecció cardíaca que el pic J, tot i que aquest és el més utilitzat habitualment, degut a la bona correlació entre l’interval IJ i el PTT aòrtic. Finalment, es presenta un mètode alternatiu per la mesura del PTT aòrtic a partir de l’interval entre el pic I del BCG i el peu del foot-to-foot IPG, que es pot obtenir de la mateixa plataforma que el BCG i incrementa la robustesa de la mesura. Els resultats presentats reforcen el paper del BCG com a en mesures en entorns ambulatoris, ja que els principals intervals objectiu d’aquesta tesi es poden obtenir a partir de les seves ones. Tot i que els mètodes descrits han estat provats en grups petits de subjectes saludables, els resultats mostren la viabilitat i el potencial de diversos intervals temporals entre les senyals proposades que poden ésser realitzats en entorns ambulatoris, sempre que els sistemes emprats compleixin els requisits mínims de disseny.Postprint (published version

    Wired, wireless and wearable bioinstrumentation for high-precision recording of bioelectrical signals in bidirectional neural interfaces

    Get PDF
    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Furthermore, electrical stimulation of specific target brain regions has been shown to alleviate symptoms of neurological disorders, such as Parkinson’s disease, essential tremor, dystonia, epilepsy etc. In recent years, the traditional practice of continuously stimulating the brain using static stimulation parameters has shifted to the use of disease biomarkers to determine the intensity and timing of stimulation. The main motivation behind closed-loop stimulation is minimization of treatment side effects by providing only the necessary stimulation required within a certain period of time, as determined from a guiding biomarker. Hence, it is clear that high-quality recording of local field potentials (LFPs) or electrocorticographic (ECoG) signals during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording ECoG signals, which are of particular importance in closed-loop DBS and epilepsy DBS. In addition, existing recording systems lack the ability to provide artefact-free high-frequency (> 100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. To address the problem of limited mobility often encountered by patients in the clinic and to provide a wide variety of high-precision sensor data to a closed-loop neurostimulation platform, a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless multi-instrument (55 × 80 mm2) was designed and developed. The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile tool to be utilized in a wide range of applications and environments. Moreover, in order to offer the capability of sensing and stimulating via the same electrode, novel real-time artefact suppression methods that could be used in bidirectional (recording and stimulation) system architectures are proposed and validated. More specifically, a novel, low-noise and versatile analog front-end (AFE), which uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency, is presented. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, the performance of the realised AFE is assessed by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5 – 250 Hz) during stimulation. Finally, a family of tunable hardware filter designs and a novel method for real-time artefact suppression that enables wide-bandwidth biosignal recordings during stimulation are also presented. This work paves the way for the development of miniaturized research tools for closed-loop neuromodulation that use a wide variety of bioelectrical signals as control signals.Open Acces
    • …
    corecore