1,190 research outputs found

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Convolutional Codes in Rank Metric with Application to Random Network Coding

    Full text link
    Random network coding recently attracts attention as a technique to disseminate information in a network. This paper considers a non-coherent multi-shot network, where the unknown and time-variant network is used several times. In order to create dependencies between the different shots, particular convolutional codes in rank metric are used. These codes are so-called (partial) unit memory ((P)UM) codes, i.e., convolutional codes with memory one. First, distance measures for convolutional codes in rank metric are shown and two constructions of (P)UM codes in rank metric based on the generator matrices of maximum rank distance codes are presented. Second, an efficient error-erasure decoding algorithm for these codes is presented. Its guaranteed decoding radius is derived and its complexity is bounded. Finally, it is shown how to apply these codes for error correction in random linear and affine network coding.Comment: presented in part at Netcod 2012, submitted to IEEE Transactions on Information Theor

    Method and apparatus for decoding compatible convolutional codes

    Get PDF
    This invention relates to learning decoders for decoding compatible convolutional codes. The decoder decodes signals which have been encoded by a convolutional coder and allows performance near the theoretical limit of performance for coded data systems. The decoder includes a sub-bit shift register wherein the received sub-bits are entered after regeneration and shifted in synchronization with a clock signal recovered from the received sub-bit stream. The received sub-bits are processed by a sub-bit decision circuit, entered into a sub-bit shift register, decoded by a decision circuit, entered into a data shift register, and updated to reduce data errors. The bit decision circuit utilizes stored sub-bits and stored data bits to determine subsequent data-bits. Data errors are reduced by using at least one up-date circuit

    Low Power Decoding Circuits for Ultra Portable Devices

    Get PDF
    A wide spread of existing and emerging battery driven wireless devices do not necessarily demand high data rates. Rather, ultra low power, portability and low cost are the most desired characteristics. Examples of such applications are wireless sensor networks (WSN), body area networks (BAN), and a variety of medical implants and health-care aids. Being small, cheap and low power for the individual transceiver nodes, let those to be used in abundance in remote places, where access for maintenance or recharging the battery is limited. In such scenarios, the lifetime of the battery, in most cases, determines the lifetime of the individual nodes. Therefore, energy consumption has to be so low that the nodes remain operational for an extended period of time, even up to a few years. It is known that using error correcting codes (ECC) in a wireless link can potentially help to reduce the transmit power considerably. However, the power consumption of the coding-decoding hardware itself is critical in an ultra low power transceiver node. Power and silicon area overhead of coding-decoding circuitry needs to be kept at a minimum in the total energy and cost budget of the transceiver node. In this thesis, low power approaches in decoding circuits in the framework of the mentioned applications and use cases are investigated. The presented work is based on the 65nm CMOS technology and is structured in four parts as follows: In the first part, goals and objectives, background theory and fundamentals of the presented work is introduced. Also, the ECC block in coordination with its surrounding environment, a low power receiver chain, is presented. Designing and implementing an ultra low power and low cost wireless transceiver node introduces challenges that requires special considerations at various levels of abstraction. Similarly, a competitive solution often occurs after a conclusive design space exploration. The proposed decoder circuits in the following parts are designed to be embedded in the low power receiver chain, that is introduced in the first part. Second part, explores analog decoding method and its capabilities to be embedded in a compact and low power transceiver node. Analog decod- ing method has been theoretically introduced over a decade ago that followed with early proof of concept circuits that promised it to be a feasible low power solution. Still, with the increased popularity of low power sensor networks, it has not been clear how an analog decoding approach performs in terms of power, silicon area, data rate and integrity of calculations in recent technologies and for low data rates. Ultra low power budget, small size requirement and more relaxed demands on data rates suggests a decoding circuit with limited complexity. Therefore, the four-state (7,5) codes are considered for hardware implementation. Simulations to chose the critical design factors are presented. Consequently, to evaluate critical specifications of the decoding circuit, three versions of analog decoding circuit with different transistor dimensions fabricated. The measurements results reveal different trade-off possibilities as well as the potentials and limitations of the analog decoding approach for the target applications. Measurements seem to be crucial, since the available computer-aided design (CAD) tools provide limited assistance and precision, given the amount of calculations and parameters that has to be included in the simulations. The largest analog decoding core (AD1) takes 0.104mm2 on silicon and the other two (AD2 and AD3) take 0.035mm2 and 0.015mm2, respectively. Consequently, coding gain in trade-off with silicon area and throughput is presented. The analog decoders operate with 0.8V supply. The achieved coding gain is 2.3 dB at bit error rates (BER)=0.001 and 10 pico-Joules per bit (pJ/b) energy efficiency is reached at 2 Mbps. Third part of this thesis, proposes an alternative low power digital decoding approach for the same codes. The desired compact and low power goal has been pursued by designing an equivalent digital decoding circuit that is fabricated in 65nm CMOS technology and operates in low voltage (near-threshold) region. The architecture of the design is optimized in system and circuit levels to propose a competitive digital alternative. Similarly, critical specifications of the decoder in terms of power, area, data rate (speed) and integrity are reported according to the measurements. The digital implementation with 0.11mm2 area, consumes minimum energy at 0.32V supply which gives 9 pJ/b energy efficiency at 125 kb/s and 2.9 dB coding gain at BER=0.001. The forth and last part, compares the proposed design alternatives based on the fabricated chips and the results attained from the measurements to conclude the most suitable solution for the considered target applications. Advantages and disadvantages of both approaches are discussed. Possible extensions of this work is introduced as future work

    Spatially Coupled Codes and Optical Fiber Communications: An Ideal Match?

    Full text link
    In this paper, we highlight the class of spatially coupled codes and discuss their applicability to long-haul and submarine optical communication systems. We first demonstrate how to optimize irregular spatially coupled LDPC codes for their use in optical communications with limited decoding hardware complexity and then present simulation results with an FPGA-based decoder where we show that very low error rates can be achieved and that conventional block-based LDPC codes can be outperformed. In the second part of the paper, we focus on the combination of spatially coupled LDPC codes with different demodulators and detectors, important for future systems with adaptive modulation and for varying channel characteristics. We demonstrate that SC codes can be employed as universal, channel-agnostic coding schemes.Comment: Invited paper to be presented in the special session on "Signal Processing, Coding, and Information Theory for Optical Communications" at IEEE SPAWC 201

    On the error statistics of Viterbi decoding and the performance of concatenated codes

    Get PDF
    Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations

    Analog MIMO detection on the basis of Belief Propagation

    Get PDF
    corecore