5,372 research outputs found

    Testing mixed-signal cores: a practical oscillation-based test in an analog macrocell

    Get PDF
    A formal set of design decisions can aid in using oscillation-based test (OBT) for analog subsystems in SoCs. The goal is to offer designers testing options that do not have significant area overhead, performance degradation, or test time. This work shows that OBT is a potential candidate for IP providers to use in combination with functional test techniques. We have shown how to modify the basic concept of OBT to come up with a practical method. Using our approach, designers can use OBT to pave the way for future developments in SoC testing, and it is simple to extend this idea to BIST.European Union 2635

    Real-Time Fault Detection and Diagnosis System for Analog and Mixed-Signal Circuits of Acousto-Magnetic EAS Devices

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper discusses fault diagnosis of the electronic circuit board, part of acousto-magnetic electronic article surveillance detection devices. The aim is that the end-user can run the fault diagnosis in real time using a portable FPGA-based platform so as to gain insight into the failures that have occurred.Peer reviewe

    Dependable Digitally-Assisted Mixed-Signal IPs Based on Integrated Self-Test & Self-Calibration

    Get PDF
    Heterogeneous SoC devices, including sensors, analogue and mixed-signal front-end circuits and the availability of massive digital processing capability, are being increasingly used in safety-critical applications like in the automotive, medical, and the security arena. Already a significant amount of attention has been paid in literature with respect to the dependability of the digital parts in heterogeneous SoCs. This is in contrast to especially the sensors and front-end mixed-signal electronics; these are however particular sensitive to external influences over time and hence determining their dependability. This paper provides an integrated SoC/IP approach to enhance the dependability. It will give an example of a digitally-assisted mixed-signal front-end IP which is being evaluated under its mission profile of an automotive tyre pressure monitoring system. It will be shown how internal monitoring and digitally-controlled adaptation by using embedded processors can help in terms of improving the dependability of this mixed-signal part under harsh conditions for a long time

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    An embedded tester core for mixed-signal System-on-Chip circuits

    Get PDF

    FPGA based Embedded System to control an electric vehicle and the driver assistance systems

    Get PDF
    This Master Thesis involves the development of an embedded system based on FPGA for controlling an electric vehicle based on a Kart platform and its electronic driving aids. It consists of two distinct stages in the process of hardware-software co-design, hardware development, which includes all the elements of the periphery of the processor and communication elements, all developed in VHDL. An important part of the hardware development also include the development of electronic driving aids, which include traction control and torque vectoring differential gear, in hardware coprocessors, also writen in VHDL. The other part of the co-design is the development of the control software, which is going to be executed by the embedded system’s processor. This Master Thesis will be used in a range of new electric vehicles that will be built in a near future and also gives the base for future thesis in the fields of automotive, electronics and computing

    RHINO software-defined radio processing blocks

    Get PDF
    This MSc project focuses on the design and implementation of a library of parameterizable, modular and reusable Digital IP blocks designed around use in Software-Defined Radio (SDR) applications and compatibility with the RHINO platform. The RHINO platform has commonalities with the better known ROACH platform, but it is a significantly cut-down and lowercost alternative which has similarities in the interfacing and FPGA/Processor interconnects of ROACH. The purpose of the library and design framework presented in this work aims to alleviate some of the commercial, high cost and static structure concerns about IP cores provided by FPGA manufactures and third-party IP vendors. It will also work around the lack of parameters and bus compatibility issues often encountered when using the freely available open resources. The RHINO hardware platform will be used for running practical applications and testing of the blocks. The HDL library that is being constructed is targeted towards both novice and experienced low-level HDL developers who can download and use it for free, and it will provide them experience of using IP Cores that support open bus interfaces in order to exploit SoC design without commercial, parameter and bus compatibility limitations. The provided modules will be of particularly benefit to the novice developers in providing ready-made examples of processing blocks, as well as parameterization settings for the interfacing blocks and associated RF receiver side configuration settings; all together these examples will help new developers establish effective ways to build their own SDR prototypes using RHINO

    Design-for-Test of Mixed-Signal Integrated Circuits

    Get PDF

    SEE Test and Data Analysis for Complex FPGA Systems

    Get PDF
    Critical space applications require knowledge of single event upset (SEU) susceptibility (mission survivability). Generic SEU test and analysis techniques do not provide adequate data for survivability analysis. This presentation provides information on how to: (1) Investigate (test for) SEU susceptibilities of tactical (mission specific) designs that are implemented in a SRAM-based FPGA; and (2) Analyze SEU cross-sections for use in survivability prediction
    corecore