182 research outputs found

    Degrees of Freedom of Certain Interference Alignment Schemes with Distributed CSIT

    Full text link
    In this work, we consider the use of interference alignment (IA) in a MIMO interference channel (IC) under the assumption that each transmitter (TX) has access to channel state information (CSI) that generally differs from that available to other TXs. This setting is referred to as distributed CSIT. In a setting where CSI accuracy is controlled by a set of power exponents, we show that in the static 3-user MIMO square IC, the number of degrees-of-freedom (DoF) that can be achieved with distributed CSIT is at least equal to the DoF achieved with the worst accuracy taken across the TXs and across the interfering links. We conjecture further that this represents exactly the DoF achieved. This result is in strong contrast with the centralized CSIT configuration usually studied (where all the TXs share the same, possibly imperfect, channel estimate) for which it was shown that the DoF achieved at receiver (RX) i is solely limited by the quality of its own feedback. This shows the critical impact of CSI discrepancies between the TXs, and highlights the price paid by distributed precoding.Comment: This is an extended version of a conference submission which will be presented at the IEEE conference SPAWC, Darmstadt, June 201

    Rate-Energy Balanced Precoding Design for SWIPT based Two-Way Relay Systems

    Get PDF
    Simultaneous wireless information and power transfer (SWIPT) technique is a popular strategy to convey both information and RF energy for harvesting at receivers. In this regard, we consider a two-way relay system with multiple users and a multi-antenna relay employing SWIPT strategy, where splitting the received signal leads to a rate-energy trade-off. In literature, the works on transceiver design have been studied using computationally intensive and suboptimal convex relaxation based schemes. In this paper, we study the balanced precoder design using chordal distance (CD) decomposition, which incurs much lower complexity, and is flexible to dynamic energy requirements. It is analyzed that given a non-negative value of CD, the achieved harvested energy for the proposed balanced precoder is higher than that for the perfect interference alignment (IA) precoder. The corresponding loss in sum rates is also analyzed via an upper bound. Simulation results add that the IA schemes based on mean-squared error are better suited for the SWIPT maximization than the subspace alignment-based methods.Comment: arXiv admin note: text overlap with arXiv:2101.1216
    • …
    corecore