630 research outputs found

    Universal secure rank-metric coding schemes with optimal communication overheads

    Full text link
    We study the problem of reducing the communication overhead from a noisy wire-tap channel or storage system where data is encoded as a matrix, when more columns (or their linear combinations) are available. We present its applications to reducing communication overheads in universal secure linear network coding and secure distributed storage with crisscross errors and erasures and in the presence of a wire-tapper. Our main contribution is a method to transform coding schemes based on linear rank-metric codes, with certain properties, to schemes with lower communication overheads. By applying this method to pairs of Gabidulin codes, we obtain coding schemes with optimal information rate with respect to their security and rank error correction capability, and with universally optimal communication overheads, when n≤m n \leq m , being n n and m m the number of columns and number of rows, respectively. Moreover, our method can be applied to other families of maximum rank distance codes when n>m n > m . The downside of the method is generally expanding the packet length, but some practical instances come at no cost.Comment: 21 pages, LaTeX; parts of this paper have been accepted for presentation at the IEEE International Symposium on Information Theory, Aachen, Germany, June 201

    Entropic bounds on coding for noisy quantum channels

    Get PDF
    In analogy with its classical counterpart, a noisy quantum channel is characterized by a loss, a quantity that depends on the channel input and the quantum operation performed by the channel. The loss reflects the transmission quality: if the loss is zero, quantum information can be perfectly transmitted at a rate measured by the quantum source entropy. By using block coding based on sequences of n entangled symbols, the average loss (defined as the overall loss of the joint n-symbol channel divided by n, when n tends to infinity) can be made lower than the loss for a single use of the channel. In this context, we examine several upper bounds on the rate at which quantum information can be transmitted reliably via a noisy channel, that is, with an asymptotically vanishing average loss while the one-symbol loss of the channel is non-zero. These bounds on the channel capacity rely on the entropic Singleton bound on quantum error-correcting codes [Phys. Rev. A 56, 1721 (1997)]. Finally, we analyze the Singleton bounds when the noisy quantum channel is supplemented with a classical auxiliary channel.Comment: 20 pages RevTeX, 10 Postscript figures. Expanded Section II, added 1 figure, changed title. To appear in Phys. Rev. A (May 98

    Algebraic Network Coding Approach to Deterministic Wireless Relay Networks

    Full text link
    The deterministic wireless relay network model, introduced by Avestimehr et al., has been proposed for approximating Gaussian relay networks. This model, known as the ADT network model, takes into account the broadcast nature of wireless medium and interference. Avestimehr et al. showed that the Min-cut Max-flow theorem holds in the ADT network. In this paper, we show that the ADT network model can be described within the algebraic network coding framework introduced by Koetter and Medard. We prove that the ADT network problem can be captured by a single matrix, called the "system matrix". We show that the min-cut of an ADT network is the rank of the system matrix; thus, eliminating the need to optimize over exponential number of cuts between two nodes to compute the min-cut of an ADT network. We extend the capacity characterization for ADT networks to a more general set of connections. Our algebraic approach not only provides the Min-cut Max-flow theorem for a single unicast/multicast connection, but also extends to non-multicast connections such as multiple multicast, disjoint multicast, and two-level multicast. We also provide sufficiency conditions for achievability in ADT networks for any general connection set. In addition, we show that the random linear network coding, a randomized distributed algorithm for network code construction, achieves capacity for the connections listed above. Finally, we extend the ADT networks to those with random erasures and cycles (thus, allowing bi-directional links). Note that ADT network was proposed for approximating the wireless networks; however, ADT network is acyclic. Furthermore, ADT network does not model the stochastic nature of the wireless links. With our algebraic framework, we incorporate both cycles as well as random failures into ADT network model.Comment: 9 pages, 12 figures, submitted to Allerton Conferenc

    Convolutional Codes in Rank Metric with Application to Random Network Coding

    Full text link
    Random network coding recently attracts attention as a technique to disseminate information in a network. This paper considers a non-coherent multi-shot network, where the unknown and time-variant network is used several times. In order to create dependencies between the different shots, particular convolutional codes in rank metric are used. These codes are so-called (partial) unit memory ((P)UM) codes, i.e., convolutional codes with memory one. First, distance measures for convolutional codes in rank metric are shown and two constructions of (P)UM codes in rank metric based on the generator matrices of maximum rank distance codes are presented. Second, an efficient error-erasure decoding algorithm for these codes is presented. Its guaranteed decoding radius is derived and its complexity is bounded. Finally, it is shown how to apply these codes for error correction in random linear and affine network coding.Comment: presented in part at Netcod 2012, submitted to IEEE Transactions on Information Theor

    Complexity-Aware Scheduling for an LDPC Encoded C-RAN Uplink

    Full text link
    Centralized Radio Access Network (C-RAN) is a new paradigm for wireless networks that centralizes the signal processing in a computing cloud, allowing commodity computational resources to be pooled. While C-RAN improves utilization and efficiency, the computational load occasionally exceeds the available resources, creating a computational outage. This paper provides a mathematical characterization of the computational outage probability for low-density parity check (LDPC) codes, a common class of error-correcting codes. For tractability, a binary erasures channel is assumed. Using the concept of density evolution, the computational demand is determined for a given ensemble of codes as a function of the erasure probability. The analysis reveals a trade-off: aggressively signaling at a high rate stresses the computing pool, while conservatively backing-off the rate can avoid computational outages. Motivated by this trade-off, an effective computationally aware scheduling algorithm is developed that balances demands for high throughput and low outage rates.Comment: Conference on Information Sciences and Systems (CISS) 2017, to appea

    Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code

    Get PDF
    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that QECC will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {\it errors} translate, in an information theoretic language, the noise affecting a transmission line, {\it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum communication, much more than noise, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances. We investigate two approaches for circumventing in-line losses using this code, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means.Comment: 5 pages, 4 figure
    • …
    corecore