11 research outputs found

    NASA Tech Briefs, June 1993

    Get PDF
    Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Partial Discharge Detection and localization Using Software Defined Radio in the future smart grid

    Get PDF
    Partial discharge (PD) occurs if a high voltage is applied to insulation that contains voids. PD is one of the predominant factors to be controlled to ensure reliability and undisrupted functions of power generators, motors, Gas Insulated Switchgear (GIS) and grid connected power distribution equipment. PD can degrade insulation and if left untreated can cause catastrophic insulation failure. However, PD pulse monitoring and detection can save cost and life prior to plant failure. PD is detected using traditional methods such as galvanic contact methods or UHF PD detection methods. Recently, an alternative method for PD detection and monitoring using wireless technology has become possible. Software Defined Radio has opened new opportunities to detect and monitor PD activity. This research makes use of SDR technology for PD detection and monitoring. The main advantages of SDR technology are that it is cost-effective and it is relatively immune against environmental noise. This is because the noise at electrical power stations is from around a few KHz to a few MHz and this is well below the SDR frequency range and PD frequency band (50-800 MHz). However, noise or interference also exists in the PD frequency band. These interferences are narrow band and mainly from FM, TV broadcasting and mobile telephony signals whose frequencies are well known, thus these interferences can be possibly processed and removed. In this research two SDR products (Realtek software defined radio RTL-SDR/Universal software radio peripheral USRP N200) are used to detect PD signals emitted by a PD source that was located at a distance of 1 m in case of RTL-SDR device while in case of USRP N200 the PD source was located at a distance of 3 m. These PD signals once received by an SDR device are recorded and processed offline in order to localize the PD source. The detected PD signal was around 20 dB above background noise in case of the RTL-SDR device and 25 dB above background noise in case of using the USRP N200. Selecting the appropriate SDR device depends on factors such as high sensitivity and selectivity. Furthermore, although USRP N200 is more expensive than RTL-SDR dongles, USRP N200 was preferred over RTL-SDR as it demonstrates higher sensitivity and overall better results. PD detection using SDR devices was conducted in the frequency domain. These result were validated using a high-end costly device, i.e. spectrum analyzer. Generally, SDR devices demonstrate satisfactory results when compared to spectrum analyzers. Considering that spectrum analyzers cost around £10,000, while a USRP N200 SRD device costs less than £1000, SDR technology seems to be cost-effective. Following PD detection, PD localization was performed using USRP N200 results, and a localization algorithm based on Received Signal Strength (RSS) was adopted. The localization result was within a 1.3-meter accuracy and this can be considered as a relatively good result. In addition, and for the purpose of evaluating the proposed scheme, more experiments were conducted using another system that is based on radiometric sensors which is WSN PD system. The estimated error was 1m in case of using the SDR-USRP N200 system and 0.8 m in case of using the WSN PD system. Results of both systems were very satisfactory, although some results at the corners of the detection grid were not good and the error was higher than 3 meters due to the fact that the RSS algorithm performs poorly at corners. These experiments were used to validate both systems for PD detection and localization in industrial environments

    Behavior of Metallic and Composite Structures (Second Volume)

    Get PDF
    Various types of metallic and composite structures are used in modern engineering practice. For aerospace, car industry, and civil engineering applications, the most important are thin-walled structures made of di erent types of metallic alloys, brous composites, laminates, and multifunctional materials with a more complicated geometry of reinforcement including nanoparticles or nano bres. The current applications in modern engineering require analysis of structures of various properties, shapes, and sizes (e.g., aircraft wings) including structural hybrid joints, subjected to di erent types of loadings, including quasi-static, dynamic, cyclic, thermal, impact, penetration, etc.The advanced metallic and composite structures should satisfy multiple structural functions during operating conditions. Structural functions include mechanical properties such as strength, sti ness, damage resistance, fracture toughness, and damping. Non-structural functions include electrical and thermal conductivities, sensing, actuation, energy harvesting, self-healing capability, electromagnetic shielding, etc.The aim of this SI is to understand the basic principles of damage growth and fracture processes in advanced metallic and composite structures that also include structural joints. Presently, it is widely recognized that important macroscopic properties, such as macroscopic sti ness and strength, are governed by processes that occur at one to several scales below the level of observation. A thorough understanding of how these processes influence the reduction of sti ffness and strength forms the key to the design of improved innovative structural elements and the analysis of existing ones

    Micro/Nano Devices for Blood Analysis, Volume II

    Get PDF
    The development of micro- and nanodevices for blood analysis continues to be a growing interdisciplinary subject that demands the careful integration of different research fields. Following the success of the book “Micro/Nano Devices for Blood Analysis”, we invited more authors from the scientific community to participate in and submit their research for a second volume. Researchers from different areas and backgrounds cooperated actively and submitted high-quality research, focusing on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis; micro- and nanofluidics; technologies for flow visualization and diagnosis; biochips, organ-on-a-chip and lab-on-a-chip devices; and their applications to research and industry

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors

    Cardiac Arrhythmias

    Get PDF
    The most intimate mechanisms of cardiac arrhythmias are still quite unknown to scientists. Genetic studies on ionic alterations, the electrocardiographic features of cardiac rhythm and an arsenal of diagnostic tests have done more in the last five years than in all the history of cardiology. Similarly, therapy to prevent or cure such diseases is growing rapidly day by day. In this book the reader will be able to see with brighter light some of these intimate mechanisms of production, as well as cutting-edge therapies to date. Genetic studies, electrophysiological and electrocardiographyc features, ion channel alterations, heart diseases still unknown , and even the relationship between the psychic sphere and the heart have been exposed in this book. It deserves to be read

    University of Wollongong Undergraduate Calendar 1996

    Get PDF

    Abstracts of The Second Tricontinental Meeting of the JSID, SID, and ESDR

    Get PDF
    corecore