35 research outputs found

    An Investigation into Neuromorphic ICs using Memristor-CMOS Hybrid Circuits

    Full text link
    The memristance of a memristor depends on the amount of charge flowing through it and when current stops flowing through it, it remembers the state. Thus, memristors are extremely suited for implementation of memory units. Memristors find great application in neuromorphic circuits as it is possible to couple memory and processing, compared to traditional Von-Neumann digital architectures where memory and processing are separate. Neural networks have a layered structure where information passes from one layer to another and each of these layers have the possibility of a high degree of parallelism. CMOS-Memristor based neural network accelerators provide a method of speeding up neural networks by making use of this parallelism and analog computation. In this project we have conducted an initial investigation into the current state of the art implementation of memristor based programming circuits. Various memristor programming circuits and basic neuromorphic circuits have been simulated. The next phase of our project revolved around designing basic building blocks which can be used to design neural networks. A memristor bridge based synaptic weighting block, a operational transconductor based summing block were initially designed. We then designed activation function blocks which are used to introduce controlled non-linearity. Blocks for a basic rectified linear unit and a novel implementation for tan-hyperbolic function have been proposed. An artificial neural network has been designed using these blocks to validate and test their performance. We have also used these fundamental blocks to design basic layers of Convolutional Neural Networks. Convolutional Neural Networks are heavily used in image processing applications. The core convolutional block has been designed and it has been used as an image processing kernel to test its performance.Comment: Bachelor's thesi

    Design of a CMOS-Memristive Mixed-Signal Neuromorphic System with Energy and Area Efficiency in System Level Applications

    Get PDF
    The von Neumann architecture has been the backbone of modern computers for several years. This computational framework is popular because it defines an easy, simple and cheap design for the processing unit and memory. Unfortunately, this architecture faces a huge bottleneck going forward since complexity in computations now demands increased parallelism and this architecture is not efficient at parallel processing. Moreover, the post-Moore\u27s law era brings a constant demand for energy-efficient computing with fewer resources and less area. Hence, researchers are interested in establishing alternatives to the von Neumann architecture and neuromorphic computing is one of the few aspiring computing architectures that contributes to this research effectively. Initially, neuromorphic computing attracted attention because of the parallelism found in the bio-inspired networks and they were interested in leveraging this advantage on a single chip. Moreover, the need for speed in real time performance also escalated the popularity of neuromorphic computing and different research groups started working on hardware implementations of neural networks. Also, neuroscience is consistently building a better understanding of biological networks that provides opportunities for bridging the gap between biological neuronal activities and artificial neural networks. As a consequence, the idea behind neuromorphic computing has continued to gain in popularity. In this research, a memristive neuromorphic system for improved power and area efficiency has been presented. This particular implementation introduces a mixed-signal platform to implement neural networks in a synchronous way. In addition to mixed-signal design, a nano-scale memristive device has been introduced that provides power and area efficiency for the overall system. The system design also includes synchronous digital long term plasticity (DLTP), an online learning methodology that helps train the neural networks during the operation phase, improving the efficiency in learning when considering power consumption and area overhead. This research also proposes a stochastic neuron design with a sigmoidal firing rate. The design introduces variability in the membrane capacitance to reach different membrane potential leading to a variable stochastic firing rate

    Synaptic weight modification and storage in hardware neural networks

    Get PDF
    In 2011 the International Technology Roadmap for Semiconductors, ITRS 2011, outlined how the semiconductor industry should proceed to pursue Moore’s Law past the 18nm generation. It envisioned a concept of ‘More than Moore’, in which existing semiconductor technologies can be exploited to enable the fabrication of diverse systems and in particular systems which integrate non-digital and biologically based functionality. A rapid expansion and growing interest in the fields of microbiology, electrophysiology, and computational neuroscience occurred. This activity has provided significant understanding and insight into the function and structure of the human brain leading to the creation of systems which mimic the operation of the biological nervous system. As the systems expand a need for small area, low power devices which replicate the important biological features of neural networks has been established to implement large scale networks. In this thesis work is presented which focuses on the modification and storage of synaptic weights in hardware neural networks. Test devices were incorporated on 3 chip runs; each chip was fabricated in a 0.35ÎŒm process from Austria MicroSystems (AMS) and used for parameter extraction, in accordance with the theoretical analysis presented. A compact circuit is presented which can implement STDP, and has advantages over current implementations in that the critical timing window for synaptic modification is implemented within the circuit. The duration of the critical timing window is set by the subthreshold current controlled by the voltage, Vleak, applied to transistor Mleak in the circuit. A physical model to predict the time window for plasticity to occur is formulated and the effects of process variations on the window is analysed. The STDP circuit is implemented using two dedicated circuit blocks, one for potentiation and one for depression where each block consists of 4 transistors and a polysilicon capacitor, and an area of 980”m2. SpectreS simulations of the back-annotated layout of the circuit and experimental results indicate that STDP with biologically plausible critical timing windows over the range 10”s to 100ms can be implemented. Theoretical analysis using parameters extracted from MOS test devices is used to describe the operation of each device and circuit presented. Simulation results and results obtained from fabricated devices confirm the validity of these designs and approaches. Both the WP and WD circuits have a power consumption of approximately 2.4mW, during a weight update. If no weight update occurs the resting currents within the device are in the nA range, thus each circuit has a power consumption of approximately 1”W. A floating gate, FG, device fabricated using a standard CMOS process is presented. This device is to be integrated with both the WP and WD STDP circuits. The FG device is designed to store negative charge on a FG to represent the synaptic weight of the associated synapse. Charge is added or removed from the FG via Fowler-Nordheim tunnelling. This thesis outlines the design criteria and theoretical operation of this device. A model of the charge storage characteristics is presented and verified using HFCV and PCV experimental results. Limited precision weights, LPW, and its potential use in hardware neural networks is also considered. LPW offers a potential solution in the quest to design a compact FG device for use with CTS. The algorithms presented in this thesis show that LPW allows for a reduction in the synaptic weight storage device while permitting the network to function as intended

    Potential and Challenges of Analog Reconfigurable Computation in Modern and Future CMOS

    Get PDF
    In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.Siirretty Doriast

    Analog Spiking Neuromorphic Circuits and Systems for Brain- and Nanotechnology-Inspired Cognitive Computing

    Get PDF
    Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves the path towards a promising solution to future energy-efficient real-time computing systems. However, existing silicon neuron approaches are designed to faithfully reproduce biological neuron dynamics, and hence they are incompatible with the RRAM synapses, or require extensive peripheral circuitry to modulate a synapse, and are thus deficient in learning capability. As a result, they eliminate most of the density advantages gained by the adoption of nanoscale devices, and fail to realize a functional computing system. This dissertation describes novel hardware architectures and neuron circuit designs that synergistically assemble the fundamental and significant elements for brain-inspired computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, in situ spike-timing dependent plasticity (STDP) and competitive learning in compact integrated circuit modules are presented. Real-world pattern learning and recognition tasks using the proposed architecture were demonstrated with circuit-level simulations. A test chip was implemented and fabricated to verify the proposed CMOS neuron and hardware architecture, and the subsequent chip measurement results successfully proved the idea. The work described in this dissertation realizes a key building block for large-scale integration of spiking neural network hardware, and then, serves as a step-stone for the building of next-generation energy-efficient brain-inspired cognitive computing systems

    Investigation of Synapto-dendritic Kernel Adapting Neuron models and their use in spiking neuromorphic architectures

    Get PDF
    The motivation for this thesis is idea that abstract, adaptive, hardware efficient, inter-neuronal transfer functions (or kernels) which carry information in the form of postsynaptic membrane potentials, are the most important (and erstwhile missing) element in neuromorphic implementations of Spiking Neural Networks (SNN). In the absence of such abstract kernels, spiking neuromorphic systems must realize very large numbers of synapses and their associated connectivity. The resultant hardware and bandwidth limitations create difficult tradeoffs which diminish the usefulness of such systems. In this thesis a novel model of spiking neurons is proposed. The proposed Synapto-dendritic Kernel Adapting Neuron (SKAN) uses the adaptation of their synapto-dendritic kernels in conjunction with an adaptive threshold to perform unsupervised learning and inference on spatio-temporal spike patterns. The hardware and connectivity requirements of the neuron model are minimized through the use of simple accumulator-based kernels as well as through the use of timing information to perform a winner take all operation between the neurons. The learning and inference operations of SKAN are characterized and shown to be robust across a range of noise environments. Next, the SKAN model is augmented with a simplified hardware-efficient model of Spike Timing Dependent Plasticity (STDP). In biology STDP is the mechanism which allows neurons to learn spatio-temporal spike patterns. However when the proposed SKAN model is augmented with a simplified STDP rule, where the synaptic kernel is used as a binary flag that enable synaptic potentiation, the result is a synaptic encoding of afferent Signal to Noise Ratio (SNR). In this combined model the neuron not only learns the target spatio-temporal spike patterns but also weighs each channel independently according to its signal to noise ratio. Additionally a novel approach is presented to achieving homeostatic plasticity in digital hardware which reduces hardware cost by eliminating the need for multipliers. Finally the behavior and potential utility of this combined model is investigated in a range of noise conditions and the digital hardware resource utilization of SKAN and SKAN + STDP is detailed using Field Programmable Gate Arrays (FPGA)

    Robust learning algorithms for spiking and rate-based neural networks

    Get PDF
    Inspired by the remarkable properties of the human brain, the fields of machine learning, computational neuroscience and neuromorphic engineering have achieved significant synergistic progress in the last decade. Powerful neural network models rooted in machine learning have been proposed as models for neuroscience and for applications in neuromorphic engineering. However, the aspect of robustness is often neglected in these models. Both biological and engineered substrates show diverse imperfections that deteriorate the performance of computation models or even prohibit their implementation. This thesis describes three projects aiming at implementing robust learning with local plasticity rules in neural networks. First, we demonstrate the advantages of neuromorphic computations in a pilot study on a prototype chip. Thereby, we quantify the speed and energy consumption of the system compared to a software simulation and show how on-chip learning contributes to the robustness of learning. Second, we present an implementation of spike-based Bayesian inference on accelerated neuromorphic hardware. The model copes, via learning, with the disruptive effects of the imperfect substrate and benefits from the acceleration. Finally, we present a robust model of deep reinforcement learning using local learning rules. It shows how backpropagation combined with neuromodulation could be implemented in a biologically plausible framework. The results contribute to the pursuit of robust and powerful learning networks for biological and neuromorphic substrates

    Memristor-Based Edge Detection for Spike Encoded Pixels

    Get PDF
    Memristors have many uses in machine learning and neuromorphic hardware. From memory elements in dot product engines to replicating both synapse and neuron wall behaviors, the memristor has proved a versatile component. Here we demonstrate an analog mode of operation observed in our silicon oxide memristors and apply this to the problem of edge detection. We demonstrate how a potential divider exploiting this analog behavior can prove a scalable solution to edge detection. We confirm its behavior experimentally and simulate its performance on a standard testbench. We show good performance comparable to existing memristor based work with a benchmark score of 0.465 on the BSDS500 dataset, while simultaneously maintaining a lower component count
    corecore