2,186 research outputs found

    Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method

    Get PDF
    This paper discusses the computation of derivatives for optimization problems governed by linear hyperbolic systems of partial differential equations (PDEs) that are discretized by the discontinuous Galerkin (dG) method. An efficient and accurate computation of these derivatives is important, for instance, in inverse problems and optimal control problems. This computation is usually based on an adjoint PDE system, and the question addressed in this paper is how the discretization of this adjoint system should relate to the dG discretization of the hyperbolic state equation. Adjoint-based derivatives can either be computed before or after discretization; these two options are often referred to as the optimize-then-discretize and discretize-then-optimize approaches. We discuss the relation between these two options for dG discretizations in space and Runge-Kutta time integration. Discretely exact discretizations for several hyperbolic optimization problems are derived, including the advection equation, Maxwell's equations and the coupled elastic-acoustic wave equation. We find that the discrete adjoint equation inherits a natural dG discretization from the discretization of the state equation and that the expressions for the discretely exact gradient often have to take into account contributions from element faces. For the coupled elastic-acoustic wave equation, the correctness and accuracy of our derivative expressions are illustrated by comparisons with finite difference gradients. The results show that a straightforward discretization of the continuous gradient differs from the discretely exact gradient, and thus is not consistent with the discretized objective. This inconsistency may cause difficulties in the convergence of gradient based algorithms for solving optimization problems

    High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation

    Get PDF
    We construct a high order discontinuous Galerkin method for solving general hyperbolic systems of conservation laws. The method is CFL-less, matrix-free, has the complexity of an explicit scheme and can be of arbitrary order in space and time. The construction is based on: (a) the representation of the system of conservation laws by a kinetic vectorial representation with a stiff relaxation term; (b) a matrix-free, CFL-less implicit discontinuous Galerkin transport solver; and (c) a stiffly accurate composition method for time integration. The method is validated on several one-dimensional test cases. It is then applied on two-dimensional and three-dimensional test cases: flow past a cylinder, magnetohydrodynamics and multifluid sedimentation

    A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes

    Full text link
    We are interested in the approximation of a steady hyperbolic problem. In some cases, the solution can satisfy an additional conservation relation, at least when it is smooth. This is the case of an entropy. In this paper, we show, starting from the discretisation of the original PDE, how to construct a scheme that is consistent with the original PDE and the additional conservation relation. Since one interesting example is given by the systems endowed by an entropy, we provide one explicit solution, and show that the accuracy of the new scheme is at most degraded by one order. In the case of a discontinuous Galerkin scheme and a Residual distribution scheme, we show how not to degrade the accuracy. This improves the recent results obtained in [1, 2, 3, 4] in the sense that no particular constraints are set on quadrature formula and that a priori maximum accuracy can still be achieved. We study the behavior of the method on a non linear scalar problem. However, the method is not restricted to scalar problems
    corecore