878 research outputs found

    Study of information transfer optimization for communication satellites

    Get PDF
    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described

    Influence of bandwidth restriction on the signal-to-noise performance of a modulated PCM/NRZ signal, part 2

    Get PDF
    Analyzing effects of bandlimiting on performance of digital transmission corrupted by additive white Gaussian noise by averaging and series expansio

    Improving QPSK Transmission In Band-Limited Channels With Interchannel Interference Through Equalization

    Get PDF
    This paper describes the use of equalization in conjunction with channel filtering to improve QPSK transmission subject to both InterSymbol interference (ISI) and interchange interference (ICI). Performance bounds are computed using the nonclassical Gauss-quadrature rule (GQR) method. The signal-to-noise ratio (SNR) gain due to linear equalization over Non equalization is thereby obtained and presented. The performance of a linear equalizer thus obtained is compared with the Viterbi algorithm sequence estimator (VASE). In the absence of bounds for the VASE receiver under the channel conditions considered, simulation results are used to make the comparison. With a possible difference in the accuracies of the performance thus obtained it is shown that the VASE provides improved performance over the linear equalizer under the channel conditions considered. Copyright © 1977 by The Institute of Electrical and Electronics Engineers, Inc

    Cyclic-Coded Integer-Forcing Equalization

    Full text link
    A discrete-time intersymbol interference channel with additive Gaussian noise is considered, where only the receiver has knowledge of the channel impulse response. An approach for combining decision-feedback equalization with channel coding is proposed, where decoding precedes the removal of intersymbol interference. This is accomplished by combining the recently proposed integer-forcing equalization approach with cyclic block codes. The channel impulse response is linearly equalized to an integer-valued response. This is then utilized by leveraging the property that a cyclic code is closed under (cyclic) integer-valued convolution. Explicit bounds on the performance of the proposed scheme are also derived

    Signal distortion in a regenerative frequency divider

    Get PDF
    A regenerative frequency divider can be constructed with one integrated circuit and a single-pole tuned circuit. The divider can be used as a means for reducing the modulation index of either deterministic or random signals. This reduction in modulation index can simplify many signal processing schemes. This technique can be used up to S-band frequencies. The mathematical model of the regenerative frequency divider corresponds very closely to that of a first order Phase Locked Loop (PLL). The loop gain is determined in part by the nonlinear element used in the feedback loop. The loop gain is also proportional to the ratio of the input envelope amplitude and the output envelope amplitude. Theoretical and measured performance of the regenerative frequency divider indicates that it is slightly superior to that of the first order PLL for processing nondeterministic signals such as a frequency modulated signal corrupted by wide-band Gaussian noise. Measured performance on a divide by two shows that the probability of cycle skipping for carrier plus wide-band Gaussian noise is an order of magnitude less than the corresponding PLL for a loop signal-to-noise ratio of 5dB. The similarity between higher order PLL models and the regenerative frequency divider with higher order loop filters is very close when the loop error is small --Abstract, page ii

    Optimal Sequence Estimation for Convolutionally Coded Signals With Binary Digital Modulation in ISI Channels

    Get PDF
    Decoding convolutional codes with binary digital modulation in intersymbol interference (ISI) channels is studied. The receiver structure is a whitened matched filter (WMF) whose transfer function is determined by the ISI channel. Decoding of the output sequence can be performed in two steps or one step. The two-step decoding first decodes the ISI corrupted coded sequence back to the ISI free coded sequence which is then decoded back to the uncoded message sequence. For one-step decoding, the entire encoder-channel-receiver system is modeled as a new encoder with combined memory length of the memory lengths of the original encoder and the channel, and followed by a weighted summation mapping from the binary symbols to real number symbols. The weighting coefficients are determined by the channel characteristic. In both two-step and one-step decoding, the Viterbi algorithm (VA) is used to perform the maximum likelihood decoding. Decoding error probability and complexity of both methods are analyzed, simulated and compared

    Optimal Sequence Estimation for Convolutionally Coded Signals With Binary Digital Modulation in ISI Channels

    Get PDF
    Decoding convolutional codes with binary digital modulation in intersymbol interference (ISI) channels is studied. The receiver structure is a whitened matched filter (WMF) whose transfer function is determined by the ISI channel. Decoding of the output sequence can be performed in two steps or one step. The two-step decoding first decodes the ISI corrupted coded sequence back to the ISI free coded sequence which is then decoded back to the uncoded message sequence. For one-step decoding, the entire encoder-channel-receiver system is modeled as a new encoder with combined memory length of the memory lengths of the original encoder and the channel, and followed by a weighted summation mapping from the binary symbols to real number symbols. The weighting coefficients are determined by the channel characteristic. In both two-step and one-step decoding, the Viterbi algorithm (VA) is used to perform the maximum likelihood decoding. Decoding error probability and complexity of both methods are analyzed, simulated and compared

    Digital communication over fixed time-contin- uous channels with memory- with special application to telephone channels

    Get PDF
    Digital communication over fixed time- continuous channels with memor

    Achievable Rate and Modulation for Bandlimited Channels with Oversampling and 1-Bit Quantization at the Receiver

    Get PDF
    Sustainably realizing applications of the future with high performance demands requires that energy efficiency becomes a central design criterion for the entire system. For example, the power consumption of the analog-to-digital converter (ADC) can become a major factor when transmitting at large bandwidths and carrier frequencies, e.g., for ultra-short range high data rate communication. The consumed energy per conversion step increases with the sampling rate such that high resolution ADCs become unfeasible in the sub-THz regime at the very high sampling rates required. This makes signaling schemes adapted to 1-bit quantizers a promising alternative. We therefore quantify the performance of bandlimited 1-bit quantized wireless communication channels using techniques like oversampling and faster-than-Nyquist (FTN) signaling to compensate for the loss of achievable rate. As a limiting case, we provide bounds on the mutual information rate of the hard bandlimited 1-bit quantized continuous-time – i.e., infinitely oversampled – additive white Gaussian noise channel in the mid-to-high signal-to-noise ratio (SNR) regime. We derive analytic expressions using runlength encoded input signals. For real signals the maximum value of the lower bound on the spectral efficiency in the high-SNR limit was found to be approximately 1.63 bit/s/Hz. Since in practical scenarios the oversampling ratio remains finite, we derive bounds on the achievable rate of the bandlimited oversampled discrete-time channel. These bounds match the results of the continuous-time channel remarkably well. We observe spectral efficiencies up to 1.53 bit/s/Hz in the high-SNR limit given hard bandlimitation. When excess bandwidth is tolerable, spectral efficiencies above 2 bit/s/Hz per domain are achievable w.r.t. the 95 %-power containment bandwidth. Applying the obtained bounds to a bandlimited oversampled 1-bit quantized multiple-input multiple-output channel, we show the benefits when using appropriate power allocation schemes. As a constant envelope modulation scheme, continuous phase modulation is considered in order to relieve linearity requirements on the power amplifier. Noise-free performance limits are investigated for phase shift keying (PSK) and continuous phase frequency shift keying (CPFSK) using higher-order modulation alphabets and intermediate frequencies. Adapted waveforms are designed that can be described as FTN-CPFSK. With the same spectral efficiency in the high-SNR limit as PSK and CPFSK, these waveforms provide a significantly improved bit error rate (BER) performance. The gain in SNR required for achieving a certain BER can be up to 20 dB.Die nachhaltige Realisierung von zukünftigen Übertragungssystemen mit hohen Leistungsanforderungen erfordert, dass die Energieeffizienz zu einem zentralen Designkriterium für das gesamte System wird. Zum Beispiel kann die Leistungsaufnahme des Analog-Digital-Wandlers (ADC) zu einem wichtigen Faktor bei der Übertragung mit großen Bandbreiten und Trägerfrequenzen werden, z. B. für die Kommunikation mit hohen Datenraten über sehr kurze Entfernungen. Die verbrauchte Energie des ADCs steigt mit der Abtastrate, so dass hochauflösende ADCs im Sub-THz-Bereich bei den erforderlichen sehr hohen Abtastraten schwer einsetzbar sind. Dies macht Signalisierungsschemata, die an 1-Bit-Quantisierer angepasst sind, zu einer vielversprechenden Alternative. Wir quantifizieren daher die Leistungsfähigkeit von bandbegrenzten 1-Bit-quantisierten drahtlosen Kommunikationssystemen, wobei Techniken wie Oversampling und Faster-than-Nyquist (FTN) Signalisierung eingesetzt werden, um den durch Quantisierung verursachten Verlust der erreichbaren Rate auszugleichen. Wir geben Grenzen für die Transinformationsrate des Extremfalls eines strikt bandbegrenzten 1-Bit quantisierten zeitkontinuierlichen – d.h. unendlich überabgetasteten – Kanals mit additivem weißen Gauß’schen Rauschen bei mittlerem bis hohem Signal-Rausch-Verhältnis (SNR) an. Wir leiten analytische Ausdrücke basierend auf lauflängencodierten Eingangssignalen ab. Für reelle Signale ist der maximale Wert der unteren Grenze der spektralen Effizienz im Hoch-SNR-Bereich etwa 1,63 Bit/s/Hz. Da die Überabtastrate in praktischen Szenarien endlich bleibt, geben wir Grenzen für die erreichbare Rate eines bandbegrenzten, überabgetasteten zeitdiskreten Kanals an. Diese Grenzen stimmen mit den Ergebnissen des zeitkontinuierlichen Kanals bemerkenswert gut überein. Im Hoch-SNR-Bereich sind spektrale Effizienzen bis zu 1,53 Bit/s/Hz bei strikter Bandbegrenzung möglich. Wenn Energieanteile außerhalb des Frequenzbandes tolerierbar sind, können spektrale Effizienzen über 2 Bit/s/Hz pro Domäne – bezogen auf die Bandbreite, die 95 % der Energie enthält – erreichbar sein. Durch die Anwendung der erhaltenen Grenzen auf einen bandbegrenzten überabgetasteten 1-Bit quantisierten Multiple-Input Multiple-Output-Kanal zeigen wir Vorteile durch die Verwendung geeigneter Leistungsverteilungsschemata. Als Modulationsverfahren mit konstanter Hüllkurve betrachten wir kontinuierliche Phasenmodulation, um die Anforderungen an die Linearität des Leistungsverstärkers zu verringern. Beschränkungen für die erreichbare Datenrate bei rauschfreier Übertragung auf Zwischenfrequenzen mit Modulationsalphabeten höherer Ordnung werden für Phase-shift keying (PSK) and Continuous-phase frequency-shift keying (CPFSK) untersucht. Weiterhin werden angepasste Signalformen entworfen, die als FTN-CPFSK beschrieben werden können. Mit der gleichen spektralen Effizienz im Hoch-SNR-Bereich wie PSK und CPFSK bieten diese Signalformen eine deutlich verbesserte Bitfehlerrate (BER). Die Verringerung des erforderlichen SNRs zur Erreichung einer bestimmten BER kann bis zu 20 dB betragen
    • …
    corecore