1,461 research outputs found

    Graphs with many strong orientations

    Full text link
    We establish mild conditions under which a possibly irregular, sparse graph GG has "many" strong orientations. Given a graph GG on nn vertices, orient each edge in either direction with probability 1/21/2 independently. We show that if GG satisfies a minimum degree condition of (1+c1)log2n(1+c_1)\log_2{n} and has Cheeger constant at least c2log2log2nlog2nc_2\frac{\log_2\log_2{n}}{\log_2{n}}, then the resulting randomly oriented directed graph is strongly connected with high probability. This Cheeger constant bound can be replaced by an analogous spectral condition via the Cheeger inequality. Additionally, we provide an explicit construction to show our minimum degree condition is tight while the Cheeger constant bound is tight up to a log2log2n\log_2\log_2{n} factor.Comment: 14 pages, 4 figures; revised version includes more background and minor changes that better clarify the expositio

    Counting degree-constrained subgraphs and orientations

    Get PDF
    The goal of this short paper to advertise the method of gauge transformations (aka holographic reduction, reparametrization) that is well-known in statistical physics and computer science, but less known in combinatorics. As an application of it we give a new proof of a theorem of A. Schrijver asserting that the number of Eulerian orientations of a dd--regular graph on nn vertices with even dd is at least ((dd/2)2d/2)n\left(\frac{\binom{d}{d/2}}{2^{d/2}}\right)^n. We also show that a dd--regular graph with even dd has always at least as many Eulerian orientations as (d/2)(d/2)--regular subgraphs

    Asymptotic behavior of the number of Eulerian orientations of graphs

    Full text link
    We consider the class of simple graphs with large algebraic connectivity (the second-smallest eigenvalue of the Laplacian matrix). For this class of graphs we determine the asymptotic behavior of the number of Eulerian orientations. In addition, we establish some new properties of the Laplacian matrix, as well as an estimate of a conditionality of matrices with the asymptotic diagonal predominanceComment: arXiv admin note: text overlap with arXiv:1104.304

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure
    corecore