19,016 research outputs found

    Discriminant analysis of principal components and pedigree assessment of genetic diversity and population structure in a tetraploid potato panel using SNPs

    Get PDF
    The reported narrow genetic base of cultivated potato (Solanum tuberosum) can be expanded by the introgression of many related species with large genetic diversity. The analysis of the genetic structure of a potato population is important to broaden the genetic base of breeding programs by the identification of different genetic pools. A panel composed by 231 diverse genotypes was characterized using single nucleotide polymorphism (SNP) markers of the Illumina Infinium Potato SNP Array V2 to identify population structure and assess genetic diversity using discriminant analysis of principal components (DAPC) and pedigree analysis. Results revealed the presence of five clusters within the populations differentiated principally by ploidy, taxonomy, origin and breeding program. The information obtained in this work could be readily used as a guide for parental introduction in new breeding programs that want to maximize variability by combination of contrasting variability sources such as those presented here.Fil: Deperi, Sofía Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Tagliotti, Martin Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Bedogni, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Manrique Carpintero, Norma C.. Michigan State University; Estados UnidosFil: Coombs, Joseph. Michigan State University; Estados UnidosFil: Zhang, Ruofang. Inner Mongolia University; ChinaFil: Douches, David. Michigan State University; Estados UnidosFil: Huarte, Marcelo Atilio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentin

    Bayesian matching of unlabelled point sets using Procrustes and configuration models

    Full text link
    The problem of matching unlabelled point sets using Bayesian inference is considered. Two recently proposed models for the likelihood are compared, based on the Procrustes size-and-shape and the full configuration. Bayesian inference is carried out for matching point sets using Markov chain Monte Carlo simulation. An improvement to the existing Procrustes algorithm is proposed which improves convergence rates, using occasional large jumps in the burn-in period. The Procrustes and configuration methods are compared in a simulation study and using real data, where it is of interest to estimate the strengths of matches between protein binding sites. The performance of both methods is generally quite similar, and a connection between the two models is made using a Laplace approximation

    Algorithms for the Problems of Length-Constrained Heaviest Segments

    Full text link
    We present algorithms for length-constrained maximum sum segment and maximum density segment problems, in particular, and the problem of finding length-constrained heaviest segments, in general, for a sequence of real numbers. Given a sequence of n real numbers and two real parameters L and U (L <= U), the maximum sum segment problem is to find a consecutive subsequence, called a segment, of length at least L and at most U such that the sum of the numbers in the subsequence is maximum. The maximum density segment problem is to find a segment of length at least L and at most U such that the density of the numbers in the subsequence is the maximum. For the first problem with non-uniform width there is an algorithm with time and space complexities in O(n). We present an algorithm with time complexity in O(n) and space complexity in O(U). For the second problem with non-uniform width there is a combinatorial solution with time complexity in O(n) and space complexity in O(U). We present a simple geometric algorithm with the same time and space complexities. We extend our algorithms to respectively solve the length-constrained k maximum sum segments problem in O(n+k) time and O(max{U, k}) space, and the length-constrained kk maximum density segments problem in O(n min{k, U-L}) time and O(U+k) space. We present extensions of our algorithms to find all the length-constrained segments having user specified sum and density in O(n+m) and O(nlog (U-L)+m) times respectively, where m is the number of output. Previously, there was no known algorithm with non-trivial result for these problems. We indicate the extensions of our algorithms to higher dimensions. All the algorithms can be extended in a straight forward way to solve the problems with non-uniform width and non-uniform weight.Comment: 21 pages, 12 figure

    Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

    Get PDF
    The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing
    corecore