11,990 research outputs found

    An unusual property of a square matrix of fuzzy sets

    Get PDF

    Nonabelian gauge field and dual description of fuzzy sphere

    Full text link
    In matrix models, higher dimensional D-branes are obtained by imposing a noncommutative relation to coordinates of lower dimensional D-branes. On the other hand, a dual description of this noncommutative space is provided by higher dimensional D-branes with gauge fields. Fuzzy spheres can appear as a configuration of lower dimensional D-branes in a constant R-R field strength background. In this paper, we consider a dual description of higher dimensional fuzzy spheres by introducing nonabelian gauge fields on higher dimensional spherical D-branes. By using the Born-Infeld action, we show that a fuzzy 2k2k-sphere and spherical D2k2k-branes with a nonabelian gauge field whose Chern character is nontrivial are the same objects when nn is large. We discuss a relationship between the noncommutative geometry and nonabelian gauge fields. Nonabelian gauge fields are represented by noncommutative matrices including the coordinate dependence. A similarity to the quantum Hall system is also studied.Comment: 28 page

    Predicting Skin Permeability by means of Computational Approaches : Reliability and Caveats in Pharmaceutical Studies

    Get PDF
    © 2019 American Chemical Society.The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.Peer reviewedFinal Accepted Versio

    Trefftz Difference Schemes on Irregular Stencils

    Full text link
    The recently developed Flexible Local Approximation MEthod (FLAME) produces accurate difference schemes by replacing the usual Taylor expansion with Trefftz functions -- local solutions of the underlying differential equation. This paper advances and casts in a general form a significant modification of FLAME proposed recently by Pinheiro & Webb: a least-squares fit instead of the exact match of the approximate solution at the stencil nodes. As a consequence of that, FLAME schemes can now be generated on irregular stencils with the number of nodes substantially greater than the number of approximating functions. The accuracy of the method is preserved but its robustness is improved. For demonstration, the paper presents a number of numerical examples in 2D and 3D: electrostatic (magnetostatic) particle interactions, scattering of electromagnetic (acoustic) waves, and wave propagation in a photonic crystal. The examples explore the role of the grid and stencil size, of the number of approximating functions, and of the irregularity of the stencils.Comment: 28 pages, 12 figures; to be published in J Comp Phy
    corecore