1,073 research outputs found

    Approximation contexts in addressing graph data structures

    Get PDF
    While the application of machine learning algorithms to practical problems has been expanded from fixed sized input data to sequences, trees or graphs input data, the composition of learning system has developed from a single model to integrated ones. Recent advances in graph based learning algorithms include: the SOMSD (Self Organizing Map for Structured Data), PMGraphSOM (Probability Measure Graph Self Organizing Map,GNN (Graph Neural Network) and GLSVM (Graph Laplacian Support Vector Machine). A main motivation of this thesis is to investigate if such algorithms, whether by themselves individually or modified, or in various combinations, would provide better performance over the more traditional artificial neural networks or kernel machine methods on some practical challenging problems. More succinctly, this thesis seeks to answer the main research question: when or under what conditions/contexts could graph based models be adjusted and tailored to be most efficacious in terms of predictive or classification performance on some challenging practical problems? There emerges a range of sub-questions including: how do we craft an effective neural learning system which can be an integration of several graph and non-graph based models? Integration of various graph based and non graph based kernel machine algorithms; enhancing the capability of the integrated model in working with challenging problems; tackling the problem of long term dependency issues which aggravate the performance of layer-wise graph based neural systems. This thesis will answer these questions. Recent research on multiple staged learning models has demonstrated the efficacy of multiple layers of alternating unsupervised and supervised learning approaches. This underlies the very successful front-end feature extraction techniques in deep neural networks. However much exploration is still possible with the investigation of the number of layers required, and the types of unsupervised or supervised learning models which should be used. Such issues have not been considered so far, when the underlying input data structure is in the form of a graph. We will explore empirically the capabilities of models of increasing complexities, the combination of the unsupervised learning algorithms, SOM, or PMGraphSOM, with or without a cascade connection with a multilayer perceptron, and with or without being followed by multiple layers of GNN. Such studies explore the effects of including or ignoring context. A parallel study involving kernel machines with or without graph inputs has also been conducted empirically

    G-SOMO : an oversampling approach based on self-organized map oversampling and geometric SMOTE

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsTraditional supervised machine learning classifiers are challenged to learn highly skewed data distributions as they are designed to expect classes to equally contribute to the minimization of the classifiers cost function. Moreover, the classifiers design expects equal misclassification costs, causing a bias for underrepresented classes. Thus, different strategies to handle the issue are proposed by researchers. The modification of the data set managed to establish since the procedure is generalizable to all classifiers. Various algorithms to rebalance the data distribution through the creation of synthetic instances were proposed in the past. In this paper, we propose a new oversampling algorithm named G-SOMO, a method that is inspired by our previous research. The algorithm identifies optimal areas to create artificial data instances in an informed manner and utilizes a geometric region during the data generation to increase variability and to avoid correlation. Our experimental setup compares the performance of G-SOMO with a benchmark of effective oversampling methods. The oversampling methods are repeatedly validated with multiple classifiers on 69 datasets. Different metrics are used to compare the retrieved insights. To aggregate the different performances over all datasets, a mean ranking is introduced. G-SOMO manages to consistently outperform competing oversampling methods. The statistical significance of our results is proven

    Comparative Analysis of Different Distributions Dataset by Using Data Mining Techniques on Credit Card Fraud Detection

    Get PDF
    Banks suffer multimillion-dollars losses each year for several reasons, the most important of which is due to credit card fraud. The issue is how to cope with the challenges we face with this kind of fraud. Skewed "class imbalance" is a very important challenge that faces this kind of fraud. Therefore, in this study, we explore four data mining techniques, namely naïve Bayesian (NB),Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Random Forest (RF), on actual credit card transactions from European cardholders. This paper offers four major contributions. First, we used under-sampling to balance the dataset because of the high imbalance class, implying skewed distribution. Second, we applied NB, SVM, KNN, and RF to under-sampled class to classify the transactions into fraudulent and genuine followed by testing the performance measures using a confusion matrix and comparing them. Third, we adopted cross-validation (CV) with 10 folds to test the accuracy of the four models with a standard deviation followed by comparing the results for all our models. Next, we examined these models against the entire dataset (skewed) using the confusion matrix and AUC (Area Under the ROC Curve) ranking measure to conclude the final results to determine which would be the best model for us to use with a particular type of fraud. The results showing the best accuracy for the NB, SVM, KNN and RF classifiers are 97,80%; 97,46%; 98,16% and 98,23%, respectively. The comparative results have been done by using four-division datasets (75:25), (90:10), (66:34) and (80:20) displayed that the RF performs better than NB, SVM, and KNN, and the results when utilizing our proposed models on the entire dataset (skewed), achieved preferable outcomes to the under-sampled dataset

    A performance comparison of oversampling methods for data generation in imbalanced learning tasks

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRMClass Imbalance problem is one of the most fundamental challenges faced by the machine learning community. The imbalance refers to number of instances in the class of interest being relatively low, as compared to the rest of the data. Sampling is a common technique for dealing with this problem. A number of over - sampling approaches have been applied in an attempt to balance the classes. This study provides an overview of the issue of class imbalance and attempts to examine some common oversampling approaches for dealing with this problem. In order to illustrate the differences, an experiment is conducted using multiple simulated data sets for comparing the performance of these oversampling methods on different classifiers based on various evaluation criteria. In addition, the effect of different parameters, such as number of features and imbalance ratio, on the classifier performance is also evaluated

    Combining Multiple Clusterings via Crowd Agreement Estimation and Multi-Granularity Link Analysis

    Full text link
    The clustering ensemble technique aims to combine multiple clusterings into a probably better and more robust clustering and has been receiving an increasing attention in recent years. There are mainly two aspects of limitations in the existing clustering ensemble approaches. Firstly, many approaches lack the ability to weight the base clusterings without access to the original data and can be affected significantly by the low-quality, or even ill clusterings. Secondly, they generally focus on the instance level or cluster level in the ensemble system and fail to integrate multi-granularity cues into a unified model. To address these two limitations, this paper proposes to solve the clustering ensemble problem via crowd agreement estimation and multi-granularity link analysis. We present the normalized crowd agreement index (NCAI) to evaluate the quality of base clusterings in an unsupervised manner and thus weight the base clusterings in accordance with their clustering validity. To explore the relationship between clusters, the source aware connected triple (SACT) similarity is introduced with regard to their common neighbors and the source reliability. Based on NCAI and multi-granularity information collected among base clusterings, clusters, and data instances, we further propose two novel consensus functions, termed weighted evidence accumulation clustering (WEAC) and graph partitioning with multi-granularity link analysis (GP-MGLA) respectively. The experiments are conducted on eight real-world datasets. The experimental results demonstrate the effectiveness and robustness of the proposed methods.Comment: The MATLAB source code of this work is available at: https://www.researchgate.net/publication/28197031

    Data Augmentation for Modeling Human Personality: The Dexter Machine

    Full text link
    Modeling human personality is important for several AI challenges, from the engineering of artificial psychotherapists to the design of persona bots. However, the field of computational personality analysis heavily relies on labeled data, which may be expensive, difficult or impossible to get. This problem is amplified when dealing with rare personality types or disorders (e.g., the anti-social psychopathic personality disorder). In this context, we developed a text-based data augmentation approach for human personality (PEDANT). PEDANT doesn't rely on the common type of labeled data but on the generative pre-trained model (GPT) combined with domain expertise. Testing the methodology on three different datasets, provides results that support the quality of the generated data

    Autoencoder for clinical data analysis and classification : data imputation, dimensional reduction, and pattern recognition

    Get PDF
    Over the last decade, research has focused on machine learning and data mining to develop frameworks that can improve data analysis and output performance; to build accurate decision support systems that benefit from real-life datasets. This leads to the field of clinical data analysis, which has attracted a significant amount of interest in the computing, information systems, and medical fields. To create and develop models by machine learning algorithms, there is a need for a particular type of data for the existing algorithms to build an efficient model. Clinical datasets pose several issues that can affect the classification of the dataset: missing values, high dimensionality, and class imbalance. In order to build a framework for mining the data, it is necessary first to preprocess data, by eliminating patients’ records that have too many missing values, imputing missing values, addressing high dimensionality, and classifying the data for decision support.This thesis investigates a real clinical dataset to solve their challenges. Autoencoder is employed as a tool that can compress data mining methodology, by extracting features and classifying data in one model. The first step in data mining methodology is to impute missing values, so several imputation methods are analysed and employed. Then high dimensionality is demonstrated and used to discard irrelevant and redundant features, in order to improve prediction accuracy and reduce computational complexity. Class imbalance is manipulated to investigate the effect on feature selection algorithms and classification algorithms.The first stage of analysis is to investigate the role of the missing values. Results found that techniques based on class separation will outperform other techniques in predictive ability. The next stage is to investigate the high dimensionality and a class imbalance. However it was found a small set of features that can improve the classification performance, the balancing class does not affect the performance as much as imbalance class
    corecore