596 research outputs found

    Using Machine Learning to Predict Swine Movements within a Regional Program to Improve Control of Infectious Diseases in the US.

    Get PDF
    Between-farm animal movement is one of the most important factors influencing the spread of infectious diseases in food animals, including in the US swine industry. Understanding the structural network of contacts in a food animal industry is prerequisite to planning for efficient production strategies and for effective disease control measures. Unfortunately, data regarding between-farm animal movements in the US are not systematically collected and thus, such information is often unavailable. In this paper, we develop a procedure to replicate the structure of a network, making use of partial data available, and subsequently use the model developed to predict animal movements among sites in 34 Minnesota counties. First, we summarized two networks of swine producing facilities in Minnesota, then we used a machine learning technique referred to as random forest, an ensemble of independent classification trees, to estimate the probability of pig movements between farms and/or markets sites located in two counties in Minnesota. The model was calibrated and tested by comparing predicted data and observed data in those two counties for which data were available. Finally, the model was used to predict animal movements in sites located across 34 Minnesota counties. Variables that were important in predicting pig movements included between-site distance, ownership, and production type of the sending and receiving farms and/or markets. Using a weighted-kernel approach to describe spatial variation in the centrality measures of the predicted network, we showed that the south-central region of the study area exhibited high aggregation of predicted pig movements. Our results show an overlap with the distribution of outbreaks of porcine reproductive and respiratory syndrome, which is believed to be transmitted, at least in part, though animal movements. While the correspondence of movements and disease is not a causal test, it suggests that the predicted network may approximate actual movements. Accordingly, the predictions provided here might help to design and implement control strategies in the region. Additionally, the methodology here may be used to estimate contact networks for other livestock systems when only incomplete information regarding animal movements is available

    A Neural Network Method for Mixture Estimation for Vegetation Mapping

    Full text link
    While most forest maps identify only the dominant vegetation class in delineated stands, individual stands are often better characterized by a mix of vegetation types. Many land management applications, including wildlife habitat studies, can benefit from knowledge of mixes. This paper examines various algorithms that use data from the Landsat Thematic Mapper (TM) satellite to estimate mixtures of vegetation types within forest stands. Included in the study are maximum likelihood classification and linear mixture models as well as a new methodology based on the ARTMAP neural network. Two paradigms are considered: classification methods, which describe stand-level vegetation mixtures as mosaics of pixels, each identified with its primary vegetation class; and mixture methods, which treat samples as blends of vegetation, even at the pixel level. Comparative analysis of these mixture estimation methods, tested on data from the Plumas National Forest, yields the following conclusions: (1) accurate estimates of proportions of hardwood and conifer cover within stands can be obtained, particularly when brush is not present in the understory; (2) ARTMAP outperforms statistical methods and linear mixture models in both the classification and the mixture paradigms; (3) topographic correction fails to improve mapping accuracy; and (4) the new ARTMAP mixture system produces the most accurate overall results. The Plumas data set has been made available to other researchers for further development of new mapping methods and comparison with the quantitative studies presented here, which establish initial benchmark standards.National Science Foundation (IRI 94-0165, SBR 95-13889); Office of Naval Research (N00014-95-1-0409, N00014-95-0657); Region 5 Remote Sensing Laboratory of the U.S. Forest Servic

    Multimodal Data Fusion and Quantitative Analysis for Medical Applications

    Get PDF
    Medical big data is not only enormous in its size, but also heterogeneous and complex in its data structure, which makes conventional systems or algorithms difficult to process. These heterogeneous medical data include imaging data (e.g., Positron Emission Tomography (PET), Computerized Tomography (CT), Magnetic Resonance Imaging (MRI)), and non-imaging data (e.g., laboratory biomarkers, electronic medical records, and hand-written doctor notes). Multimodal data fusion is an emerging vital field to address this urgent challenge, aiming to process and analyze the complex, diverse and heterogeneous multimodal data. The fusion algorithms bring great potential in medical data analysis, by 1) taking advantage of complementary information from different sources (such as functional-structural complementarity of PET/CT images) and 2) exploiting consensus information that reflects the intrinsic essence (such as the genetic essence underlying medical imaging and clinical symptoms). Thus, multimodal data fusion benefits a wide range of quantitative medical applications, including personalized patient care, more optimal medical operation plan, and preventive public health. Though there has been extensive research on computational approaches for multimodal fusion, there are three major challenges of multimodal data fusion in quantitative medical applications, which are summarized as feature-level fusion, information-level fusion and knowledge-level fusion: • Feature-level fusion. The first challenge is to mine multimodal biomarkers from high-dimensional small-sample multimodal medical datasets, which hinders the effective discovery of informative multimodal biomarkers. Specifically, efficient dimension reduction algorithms are required to alleviate "curse of dimensionality" problem and address the criteria for discovering interpretable, relevant, non-redundant and generalizable multimodal biomarkers. • Information-level fusion. The second challenge is to exploit and interpret inter-modal and intra-modal information for precise clinical decisions. Although radiomics and multi-branch deep learning have been used for implicit information fusion guided with supervision of the labels, there is a lack of methods to explicitly explore inter-modal relationships in medical applications. Unsupervised multimodal learning is able to mine inter-modal relationship as well as reduce the usage of labor-intensive data and explore potential undiscovered biomarkers; however, mining discriminative information without label supervision is an upcoming challenge. Furthermore, the interpretation of complex non-linear cross-modal associations, especially in deep multimodal learning, is another critical challenge in information-level fusion, which hinders the exploration of multimodal interaction in disease mechanism. • Knowledge-level fusion. The third challenge is quantitative knowledge distillation from multi-focus regions on medical imaging. Although characterizing imaging features from single lesions using either feature engineering or deep learning methods have been investigated in recent years, both methods neglect the importance of inter-region spatial relationships. Thus, a topological profiling tool for multi-focus regions is in high demand, which is yet missing in current feature engineering and deep learning methods. Furthermore, incorporating domain knowledge with distilled knowledge from multi-focus regions is another challenge in knowledge-level fusion. To address the three challenges in multimodal data fusion, this thesis provides a multi-level fusion framework for multimodal biomarker mining, multimodal deep learning, and knowledge distillation from multi-focus regions. Specifically, our major contributions in this thesis include: • To address the challenges in feature-level fusion, we propose an Integrative Multimodal Biomarker Mining framework to select interpretable, relevant, non-redundant and generalizable multimodal biomarkers from high-dimensional small-sample imaging and non-imaging data for diagnostic and prognostic applications. The feature selection criteria including representativeness, robustness, discriminability, and non-redundancy are exploited by consensus clustering, Wilcoxon filter, sequential forward selection, and correlation analysis, respectively. SHapley Additive exPlanations (SHAP) method and nomogram are employed to further enhance feature interpretability in machine learning models. • To address the challenges in information-level fusion, we propose an Interpretable Deep Correlational Fusion framework, based on canonical correlation analysis (CCA) for 1) cohesive multimodal fusion of medical imaging and non-imaging data, and 2) interpretation of complex non-linear cross-modal associations. Specifically, two novel loss functions are proposed to optimize the discovery of informative multimodal representations in both supervised and unsupervised deep learning, by jointly learning inter-modal consensus and intra-modal discriminative information. An interpretation module is proposed to decipher the complex non-linear cross-modal association by leveraging interpretation methods in both deep learning and multimodal consensus learning. • To address the challenges in knowledge-level fusion, we proposed a Dynamic Topological Analysis framework, based on persistent homology, for knowledge distillation from inter-connected multi-focus regions in medical imaging and incorporation of domain knowledge. Different from conventional feature engineering and deep learning, our DTA framework is able to explicitly quantify inter-region topological relationships, including global-level geometric structure and community-level clusters. K-simplex Community Graph is proposed to construct the dynamic community graph for representing community-level multi-scale graph structure. The constructed dynamic graph is subsequently tracked with a novel Decomposed Persistence algorithm. Domain knowledge is incorporated into the Adaptive Community Profile, summarizing the tracked multi-scale community topology with additional customizable clinically important factors

    A Corpus Driven Computational Intelligence Framework for Deception Detection in Financial Text

    Get PDF
    Financial fraud rampages onwards seemingly uncontained. The annual cost of fraud in the UK is estimated to be as high as £193bn a year [1] . From a data science perspective and hitherto less explored this thesis demonstrates how the use of linguistic features to drive data mining algorithms can aid in unravelling fraud. To this end, the spotlight is turned on Financial Statement Fraud (FSF), known to be the costliest type of fraud [2]. A new corpus of 6.3 million words is composed of102 annual reports/10-K (narrative sections) from firms formally indicted for FSF juxtaposed with 306 non-fraud firms of similar size and industrial grouping. Differently from other similar studies, this thesis uniquely takes a wide angled view and extracts a range of features of different categories from the corpus. These linguistic correlates of deception are uncovered using a variety of techniques and tools. Corpus linguistics methodology is applied to extract keywords and to examine linguistic structure. N-grams are extracted to draw out collocations. Readability measurement in financial text is advanced through the extraction of new indices that probe the text at a deeper level. Cognitive and perceptual processes are also picked out. Tone, intention and liquidity are gauged using customised word lists. Linguistic ratios are derived from grammatical constructs and word categories. An attempt is also made to determine ‘what’ was said as opposed to ‘how’. Further a new module is developed to condense synonyms into concepts. Lastly frequency counts from keywords unearthed from a previous content analysis study on financial narrative are also used. These features are then used to drive machine learning based classification and clustering algorithms to determine if they aid in discriminating a fraud from a non-fraud firm. The results derived from the battery of models built typically exceed classification accuracy of 70%. The above process is amalgamated into a framework. The process outlined, driven by empirical data demonstrates in a practical way how linguistic analysis could aid in fraud detection and also constitutes a unique contribution made to deception detection studies

    A Semi-Automated Approach to Medical Image Segmentation using Conditional Random Field Inference

    Full text link
    Medical image segmentation plays a crucial role in delivering effective patient care in various diagnostic and treatment modalities. Manual delineation of target volumes and all critical structures is a very tedious and highly time-consuming process and introduce uncertainties of treatment outcomes of patients. Fully automatic methods holds great promise for reducing cost and time, while at the same time improving accuracy and eliminating expert variability, yet there are still great challenges. Legally and ethically, human oversight must be integrated with ”smart tools” favoring a semi-automatic technique which can leverage the best aspects of both human and computer. In this work we show that we can formulate a semi-automatic framework for the segmentation problem by formulating it as an energy minimization problem in Conditional Random Field (CRF). We show that human input can be used as adaptive training data to condition a probabilistic boundary term modeled for the heterogeneous boundary characteristics of anatomical structures. We demonstrated that our method can effortlessly adapt to multiple structures and image modalities using a single CRF framework and tools to learn probabilistic terms interactively. To tackle a more difficult multi-class segmentation problem, we developed a new ensemble one-vs-rest graph cut algorithm. Each graph in the ensemble performs a simple and efficient bi-class (a target class vs the rest of the classes) segmentation. The final segmentation is obtained by majority vote. Our algorithm is both faster and more accurate when compared with the prior multi-class method which iteratively swaps classes. In this Thesis, we also include novel volumetric segmentation algorithms which employ deep learning and indicate how to synthesize our CRF framework with convolutional neural networks (CNN). This would allow incorporating user guidance into CNN based deep learning for this task. We think a deep learning based method interactively guided by human expert is the ideal solution for medical image segmentation

    Semi-Supervised Learning Method for the Augmentation of an Incomplete Image-Based Inventory of Earthquake-Induced Soil Liquefaction Surface Effects

    Get PDF
    Soil liquefaction often occurs as a secondary hazard during earthquakes and can lead to significant structural and infrastructure damage. Liquefaction is most often documented through field reconnaissance and recorded as point locations. Complete liquefaction inventories across the impacted area are rare but valuable for developing empirical liquefaction prediction models. Remote sensing analysis can be used to rapidly produce the full spatial extent of liquefaction ejecta after an event to inform and supplement field investigations. Visually labeling liquefaction ejecta from remotely sensed imagery is time-consuming and prone to human error and inconsistency. This study uses a partially labeled liquefaction inventory created from visual annotations by experts and proposes a pixel-based approach to detecting unlabeled liquefaction using advanced machine learning and image processing techniques, and to generating an augmented inventory of liquefaction ejecta with high spatial completeness. The proposed methodology is applied to aerial imagery taken from the 2011 Christchurch earthquake and considers the available partial liquefaction labels as high-certainty liquefaction features. This study consists of two specific comparative analyses. (1) To tackle the limited availability of labeled data and their spatial incompleteness, a semi-supervised self-training classification via Linear Discriminant Analysis is presented, and the performance of the semi-supervised learning approach is compared with supervised learning classification. (2) A post-event aerial image with RGB (red-green-blue) channels is used to extract color transformation bands, statistical indices, texture components, and dimensionality reduction outputs, and performances of the classification model with different combinations of selected features from these four groups are compared. Building footprints are also used as the only non-imagery geospatial information to improve classification accuracy by masking out building roofs from the classification process. To prepare the multi-class labeled data, regions of interest (ROIs) were drawn to collect samples of seven land cover and land use classes. The labeled samples of liquefaction were also clustered into two groups (dark and light) using the Fuzzy C-Means clustering algorithm to split the liquefaction pixels into two classes. A comparison of the generated maps with fully and manually labeled liquefaction data showed that the proposed semi-supervised method performs best when selected high-ranked features of the two groups of statistical indices (gradient weight and sum of the band squares) and dimensionality reduction outputs (first and second principal components) are used. It also outperforms supervised learning and can better augment the liquefaction labels across the image in terms of spatial completeness

    Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature

    Full text link
    [ES] El futuro de la imagen médica está ligado a la inteligencia artificial. El análisis manual de imágenes médicas es hoy en día una tarea ardua, propensa a errores y a menudo inasequible para los humanos, que ha llamado la atención de la comunidad de Aprendizaje Automático (AA). La Imagen por Resonancia Magnética (IRM) nos proporciona una rica variedad de representaciones de la morfología y el comportamiento de lesiones inaccesibles sin una intervención invasiva arriesgada. Sin embargo, explotar la potente pero a menudo latente información contenida en la IRM es una tarea muy complicada, que requiere técnicas de análisis computacional inteligente. Los tumores del sistema nervioso central son una de las enfermedades más críticas estudiadas a través de IRM. Específicamente, el glioblastoma representa un gran desafío, ya que, hasta la fecha, continua siendo un cáncer letal que carece de una terapia satisfactoria. Del conjunto de características que hacen del glioblastoma un tumor tan agresivo, un aspecto particular que ha sido ampliamente estudiado es su heterogeneidad vascular. La fuerte proliferación vascular del glioblastoma, así como su robusta angiogénesis han sido consideradas responsables de la alta letalidad de esta neoplasia. Esta tesis se centra en la investigación y desarrollo del método Hemodynamic Tissue Signature (HTS): un método de AA no supervisado para describir la heterogeneidad vascular de los glioblastomas mediante el análisis de perfusión por IRM. El método HTS se basa en el concepto de hábitat, que se define como una subregión de la lesión con un perfil de IRM que describe un comportamiento fisiológico concreto. El método HTS delinea cuatro hábitats en el glioblastoma: el hábitat HAT, como la región más perfundida del tumor con captación de contraste; el hábitat LAT, como la región del tumor con un perfil angiogénico más bajo; el hábitat IPE, como la región adyacente al tumor con índices de perfusión elevados; y el hábitat VPE, como el edema restante de la lesión con el perfil de perfusión más bajo. La investigación y desarrollo de este método ha originado una serie de contribuciones enmarcadas en esta tesis. Primero, para verificar la fiabilidad de los métodos de AA no supervisados en la extracción de patrones de IRM, se realizó una comparativa para la tarea de segmentación de gliomas de grado alto. Segundo, se propuso un algoritmo de AA no supervisado dentro de la familia de los Spatially Varying Finite Mixture Models. El algoritmo propone una densidad a priori basada en un Markov Random Field combinado con la función probabilística Non-Local Means, para codificar la idea de que píxeles vecinos tienden a pertenecer al mismo objeto. Tercero, se presenta el método HTS para describir la heterogeneidad vascular del glioblastoma. El método se ha aplicado a casos reales en una cohorte local de un solo centro y en una cohorte internacional de más de 180 pacientes de 7 centros europeos. Se llevó a cabo una evaluación exhaustiva del método para medir el potencial pronóstico de los hábitats HTS. Finalmente, la tecnología desarrollada en la tesis se ha integrado en la plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofrece dos servicios: 1) segmentación de tejidos de glioblastoma, y 2) evaluación de la heterogeneidad vascular del tumor mediante el método HTS. Los resultados de esta tesis han sido publicados en diez contribuciones científicas, incluyendo revistas y conferencias de alto impacto en las áreas de Informática Médica, Estadística y Probabilidad, Radiología y Medicina Nuclear y Aprendizaje Automático. También se emitió una patente industrial registrada en España, Europa y EEUU. Finalmente, las ideas originales concebidas en esta tesis dieron lugar a la creación de ONCOANALYTICS CDX, una empresa enmarcada en el modelo de negocio de los companion diagnostics de compuestos farmacéuticos.[EN] The future of medical imaging is linked to Artificial Intelligence (AI). The manual analysis of medical images is nowadays an arduous, error-prone and often unaffordable task for humans, which has caught the attention of the Machine Learning (ML) community. Magnetic Resonance Imaging (MRI) provides us with a wide variety of rich representations of the morphology and behavior of lesions completely inaccessible without a risky invasive intervention. Nevertheless, harnessing the powerful but often latent information contained in MRI acquisitions is a very complicated task, which requires computational intelligent analysis techniques. Central nervous system tumors are one of the most critical diseases studied through MRI. Specifically, glioblastoma represents a major challenge, as it remains a lethal cancer that, to date, lacks a satisfactory therapy. Of the entire set of characteristics that make glioblastoma so aggressive, a particular aspect that has been widely studied is its vascular heterogeneity. The strong vascular proliferation of glioblastomas, as well as their robust angiogenesis and extensive microvasculature heterogeneity have been claimed responsible for the high lethality of the neoplasm. This thesis focuses on the research and development of the Hemodynamic Tissue Signature (HTS) method: an unsupervised ML approach to describe the vascular heterogeneity of glioblastomas by means of perfusion MRI analysis. The HTS builds on the concept of habitats. A habitat is defined as a sub-region of the lesion with a particular MRI profile describing a specific physiological behavior. The HTS method delineates four habitats within the glioblastoma: the HAT habitat, as the most perfused region of the enhancing tumor; the LAT habitat, as the region of the enhancing tumor with a lower angiogenic profile; the potentially IPE habitat, as the non-enhancing region adjacent to the tumor with elevated perfusion indexes; and the VPE habitat, as the remaining edema of the lesion with the lowest perfusion profile. The research and development of the HTS method has generated a number of contributions to this thesis. First, in order to verify that unsupervised learning methods are reliable to extract MRI patterns to describe the heterogeneity of a lesion, a comparison among several unsupervised learning methods was conducted for the task of high grade glioma segmentation. Second, a Bayesian unsupervised learning algorithm from the family of Spatially Varying Finite Mixture Models is proposed. The algorithm integrates a Markov Random Field prior density weighted by the probabilistic Non-Local Means function, to codify the idea that neighboring pixels tend to belong to the same semantic object. Third, the HTS method to describe the vascular heterogeneity of glioblastomas is presented. The HTS method has been applied to real cases, both in a local single-center cohort of patients, and in an international retrospective cohort of more than 180 patients from 7 European centers. A comprehensive evaluation of the method was conducted to measure the prognostic potential of the HTS habitats. Finally, the technology developed in this thesis has been integrated into an online open-access platform for its academic use. The ONCOhabitats platform is hosted at https://www.oncohabitats.upv.es, and provides two main services: 1) glioblastoma tissue segmentation, and 2) vascular heterogeneity assessment of glioblastomas by means of the HTS method. The results of this thesis have been published in ten scientific contributions, including top-ranked journals and conferences in the areas of Medical Informatics, Statistics and Probability, Radiology & Nuclear Medicine and Machine Learning. An industrial patent registered in Spain, Europe and EEUU was also issued. Finally, the original ideas conceived in this thesis led to the foundation of ONCOANALYTICS CDX, a company framed into the business model of companion diagnostics for pharmaceutical compounds.[CA] El futur de la imatge mèdica està lligat a la intel·ligència artificial. L'anàlisi manual d'imatges mèdiques és hui dia una tasca àrdua, propensa a errors i sovint inassequible per als humans, que ha cridat l'atenció de la comunitat d'Aprenentatge Automàtic (AA). La Imatge per Ressonància Magnètica (IRM) ens proporciona una àmplia varietat de representacions de la morfologia i el comportament de lesions inaccessibles sense una intervenció invasiva arriscada. Tanmateix, explotar la potent però sovint latent informació continguda a les adquisicions de IRM esdevé una tasca molt complicada, que requereix tècniques d'anàlisi computacional intel·ligent. Els tumors del sistema nerviós central són una de les malalties més crítiques estudiades a través de IRM. Específicament, el glioblastoma representa un gran repte, ja que, fins hui, continua siguent un càncer letal que manca d'una teràpia satisfactòria. Del conjunt de característiques que fan del glioblastoma un tumor tan agressiu, un aspecte particular que ha sigut àmpliament estudiat és la seua heterogeneïtat vascular. La forta proliferació vascular dels glioblastomes, així com la seua robusta angiogènesi han sigut considerades responsables de l'alta letalitat d'aquesta neoplàsia. Aquesta tesi es centra en la recerca i desenvolupament del mètode Hemodynamic Tissue Signature (HTS): un mètode d'AA no supervisat per descriure l'heterogeneïtat vascular dels glioblastomas mitjançant l'anàlisi de perfusió per IRM. El mètode HTS es basa en el concepte d'hàbitat, que es defineix com una subregió de la lesió amb un perfil particular d'IRM, que descriu un comportament fisiològic concret. El mètode HTS delinea quatre hàbitats dins del glioblastoma: l'hàbitat HAT, com la regió més perfosa del tumor amb captació de contrast; l'hàbitat LAT, com la regió del tumor amb un perfil angiogènic més baix; l'hàbitat IPE, com la regió adjacent al tumor amb índexs de perfusió elevats, i l'hàbitat VPE, com l'edema restant de la lesió amb el perfil de perfusió més baix. La recerca i desenvolupament del mètode HTS ha originat una sèrie de contribucions emmarcades a aquesta tesi. Primer, per verificar la fiabilitat dels mètodes d'AA no supervisats en l'extracció de patrons d'IRM, es va realitzar una comparativa en la tasca de segmentació de gliomes de grau alt. Segon, s'ha proposat un algorisme d'AA no supervisat dintre de la família dels Spatially Varying Finite Mixture Models. L'algorisme proposa un densitat a priori basada en un Markov Random Field combinat amb la funció probabilística Non-Local Means, per a codificar la idea que els píxels veïns tendeixen a pertànyer al mateix objecte semàntic. Tercer, es presenta el mètode HTS per descriure l'heterogeneïtat vascular dels glioblastomas. El mètode HTS s'ha aplicat a casos reals en una cohort local d'un sol centre i en una cohort internacional de més de 180 pacients de 7 centres europeus. Es va dur a terme una avaluació exhaustiva del mètode per mesurar el potencial pronòstic dels hàbitats HTS. Finalment, la tecnologia desenvolupada en aquesta tesi s'ha integrat en una plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofereix dos serveis: 1) segmentació dels teixits del glioblastoma, i 2) avaluació de l'heterogeneïtat vascular dels glioblastomes mitjançant el mètode HTS. Els resultats d'aquesta tesi han sigut publicats en deu contribucions científiques, incloent revistes i conferències de primer nivell a les àrees d'Informàtica Mèdica, Estadística i Probabilitat, Radiologia i Medicina Nuclear i Aprenentatge Automàtic. També es va emetre una patent industrial registrada a Espanya, Europa i els EEUU. Finalment, les idees originals concebudes en aquesta tesi van donar lloc a la creació d'ONCOANALYTICS CDX, una empresa emmarcada en el model de negoci dels companion diagnostics de compostos farmacèutics.En este sentido quiero agradecer a las diferentes instituciones y estructuras de financiación de investigación que han contribuido al desarrollo de esta tesis. En especial quiero agradecer a la Universitat Politècnica de València, donde he desarrollado toda mi carrera acadèmica y científica, así como al Ministerio de Ciencia e Innovación, al Ministerio de Economía y Competitividad, a la Comisión Europea, al EIT Health Programme y a la fundación Caixa ImpulseJuan Albarracín, J. (2020). Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149560TESI

    Criminal data analysis based on low rank sparse representation

    Get PDF
    FINDING effective clustering methods for a high dimensional dataset is challenging due to the curse of dimensionality. These challenges can usually make the most of basic common algorithms fail in highdimensional spaces from tackling problems such as large number of groups, and overlapping. Most domains uses some parameters to describe the appearance, geometry and dynamics of a scene. This has motivated the implementation of several techniques of a high-dimensional data for finding a low-dimensional space. Many proposed methods fail to overcome the challenges, especially when the data input is high-dimensional, and the clusters have a complex. REGULARLY in high dimensional data, lots of the data dimensions are not related and might hide the existing clusters in noisy data. High-dimensional data often reside on some low dimensional subspaces. The problem of subspace clustering algorithms is to uncover the type of relationship of an objects from one dimension that are related in different subsets of another dimensions. The state-of-the-art methods for subspace segmentation which included the Low Rank Representation (LRR) and Sparse Representation (SR). The former seeks the global lowest-rank representation but restrictively assumes the independence among subspaces, whereas the latter seeks the clustering of disjoint or overlapped subspaces through locality measure, which, however, causes failure in the case of large noise. THIS thesis aims are to identify the key problems and obstacles that have challenged the researchers in recent years in clustering high dimensional data, then to implement an effective subspace clustering methods for solving high dimensional crimes domains for both real events and synthetic data which has complex data structure with 168 different offence crimes. As well as to overcome the disadvantages of existed subspace algorithms techniques. To this end, a Low-Rank Sparse Representation (LRSR) theory, the future will refer to as Criminal Data Analysis Based on LRSR will be examined, then to be used to recover and segment embedding subspaces. The results of these methods will be discussed and compared with what already have been examined on previous approaches such as K-mean and PCA segmented based on K-means. The previous approaches have helped us to chose the right subspace clustering methods. The Proposed method based on subspace segmentation method named Low Rank subspace Sparse Representation (LRSR) which not only recovers the low-rank subspaces but also gets a relatively sparse segmentation with respect to disjoint subspaces or even overlapping subspaces. BOTH UCI Machine Learning Repository, and crime database are the best to find and compare the best subspace clustering algorithm that fit for high dimensional space data. We used many Open-Source Machine Learning Frameworks and Tools for both employ our machine learning tasks and methods including preparing, transforming, clustering and visualizing the high-dimensional crime dataset, we precisely have used the most modern and powerful Machine Learning Frameworks data science that known as SciKit-Learn for library for the Python programming language, as well as we have used R, and Matlab in previous experiment

    Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization

    Get PDF
    Cytometry by time-of-flight (CyTOF) has emerged as a high-throughput single cell technology able to provide large samples of protein readouts. Already, there exists a large pool of advanced high-dimensional analysis algorithms that explore the observed heterogeneous distributions making intriguing biological inferences. A fact largely overlooked by these methods, however, is the effect of the established data preprocessing pipeline to the distributions of the measured quantities. In this article, we focus on randomization, a transformation used for improving data visualization, which can negatively affect multivariate data analysis methods such as dimensionality reduction, clustering, and network reconstruction algorithms. Our results indicate that randomization should be used only for visualization purposes, but not in conjunction with high-dimensional analytical tools

    Advanced machine learning methods for oncological image analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally- invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head- neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra- dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis
    corecore